Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihord6a
Next ⟩
dihord5apre
Metamath Proof Explorer
Ascii
Unicode
Theorem
dihord6a
Description:
Part of proof that isomorphism H is order-preserving .
(Contributed by
NM
, 7-Mar-2014)
Ref
Expression
Hypotheses
dihord3.b
⊢
B
=
Base
K
dihord3.l
⊢
≤
˙
=
≤
K
dihord3.h
⊢
H
=
LHyp
⁡
K
dihord3.i
⊢
I
=
DIsoH
⁡
K
⁡
W
Assertion
dihord6a
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
¬
X
≤
˙
W
∧
Y
∈
B
∧
Y
≤
˙
W
∧
I
⁡
X
⊆
I
⁡
Y
→
X
≤
˙
Y
Proof
Step
Hyp
Ref
Expression
1
dihord3.b
⊢
B
=
Base
K
2
dihord3.l
⊢
≤
˙
=
≤
K
3
dihord3.h
⊢
H
=
LHyp
⁡
K
4
dihord3.i
⊢
I
=
DIsoH
⁡
K
⁡
W
5
eqid
⊢
Atoms
⁡
K
=
Atoms
⁡
K
6
eqid
⊢
oc
⁡
K
⁡
W
=
oc
⁡
K
⁡
W
7
eqid
⊢
h
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
=
h
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
B
8
eqid
⊢
LTrn
⁡
K
⁡
W
=
LTrn
⁡
K
⁡
W
9
eqid
⊢
TEndo
⁡
K
⁡
W
=
TEndo
⁡
K
⁡
W
10
eqid
⊢
DVecH
⁡
K
⁡
W
=
DVecH
⁡
K
⁡
W
11
eqid
⊢
LSSum
⁡
DVecH
⁡
K
⁡
W
=
LSSum
⁡
DVecH
⁡
K
⁡
W
12
eqid
⊢
ι
h
∈
LTrn
⁡
K
⁡
W
|
h
⁡
oc
⁡
K
⁡
W
=
q
=
ι
h
∈
LTrn
⁡
K
⁡
W
|
h
⁡
oc
⁡
K
⁡
W
=
q
13
1
2
5
3
6
7
8
9
4
10
11
12
dihord6apre
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
∧
¬
X
≤
˙
W
∧
Y
∈
B
∧
Y
≤
˙
W
∧
I
⁡
X
⊆
I
⁡
Y
→
X
≤
˙
Y