Metamath Proof Explorer


Theorem dihord6a

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord3.b B = Base K
dihord3.l ˙ = K
dihord3.h H = LHyp K
dihord3.i I = DIsoH K W
Assertion dihord6a K HL W H X B ¬ X ˙ W Y B Y ˙ W I X I Y X ˙ Y

Proof

Step Hyp Ref Expression
1 dihord3.b B = Base K
2 dihord3.l ˙ = K
3 dihord3.h H = LHyp K
4 dihord3.i I = DIsoH K W
5 eqid Atoms K = Atoms K
6 eqid oc K W = oc K W
7 eqid h LTrn K W I B = h LTrn K W I B
8 eqid LTrn K W = LTrn K W
9 eqid TEndo K W = TEndo K W
10 eqid DVecH K W = DVecH K W
11 eqid LSSum DVecH K W = LSSum DVecH K W
12 eqid ι h LTrn K W | h oc K W = q = ι h LTrn K W | h oc K W = q
13 1 2 5 3 6 7 8 9 4 10 11 12 dihord6apre K HL W H X B ¬ X ˙ W Y B Y ˙ W I X I Y X ˙ Y