Step |
Hyp |
Ref |
Expression |
1 |
|
dihord6apre.b |
|
2 |
|
dihord6apre.l |
|
3 |
|
dihord6apre.a |
|
4 |
|
dihord6apre.h |
|
5 |
|
dihord6apre.p |
|
6 |
|
dihord6apre.o |
|
7 |
|
dihord6apre.t |
|
8 |
|
dihord6apre.e |
|
9 |
|
dihord6apre.i |
|
10 |
|
dihord6apre.u |
|
11 |
|
dihord6apre.s |
|
12 |
|
dihord6apre.g |
|
13 |
1 4 7 8 6
|
tendo1ne0 |
|
14 |
13
|
3ad2ant1 |
|
15 |
14
|
neneqd |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
1 2 16 17 3 4
|
lhpmcvr2 |
|
19 |
18
|
3adant3 |
|
20 |
|
simpl1 |
|
21 |
|
simpl2 |
|
22 |
|
simpr |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
1 2 16 17 3 4 9 23 24 10 11
|
dihvalcq |
|
26 |
20 21 22 25
|
syl3anc |
|
27 |
|
simpl3 |
|
28 |
1 2 4 9 23
|
dihvalb |
|
29 |
20 27 28
|
syl2anc |
|
30 |
26 29
|
sseq12d |
|
31 |
4 10 20
|
dvhlmod |
|
32 |
|
eqid |
|
33 |
32
|
lsssssubg |
|
34 |
31 33
|
syl |
|
35 |
|
simprl |
|
36 |
2 3 4 10 24 32
|
diclss |
|
37 |
20 35 36
|
syl2anc |
|
38 |
34 37
|
sseldd |
|
39 |
|
simpl1l |
|
40 |
39
|
hllatd |
|
41 |
|
simpl2l |
|
42 |
|
simpl1r |
|
43 |
1 4
|
lhpbase |
|
44 |
42 43
|
syl |
|
45 |
1 17
|
latmcl |
|
46 |
40 41 44 45
|
syl3anc |
|
47 |
1 2 17
|
latmle2 |
|
48 |
40 41 44 47
|
syl3anc |
|
49 |
1 2 4 10 23 32
|
diblss |
|
50 |
20 46 48 49
|
syl12anc |
|
51 |
34 50
|
sseldd |
|
52 |
11
|
lsmub1 |
|
53 |
38 51 52
|
syl2anc |
|
54 |
|
sstr |
|
55 |
|
eqidd |
|
56 |
4 7 8
|
tendoidcl |
|
57 |
20 56
|
syl |
|
58 |
|
fvex |
|
59 |
7
|
fvexi |
|
60 |
|
resiexg |
|
61 |
59 60
|
ax-mp |
|
62 |
2 3 4 5 7 8 24 12 58 61
|
dicopelval2 |
|
63 |
20 35 62
|
syl2anc |
|
64 |
55 57 63
|
mpbir2and |
|
65 |
|
ssel2 |
|
66 |
|
eqid |
|
67 |
1 2 4 7 6 66 23
|
dibopelval2 |
|
68 |
20 27 67
|
syl2anc |
|
69 |
|
simpr |
|
70 |
68 69
|
syl6bi |
|
71 |
65 70
|
syl5 |
|
72 |
64 71
|
mpan2d |
|
73 |
54 72
|
syl5 |
|
74 |
53 73
|
mpand |
|
75 |
30 74
|
sylbid |
|
76 |
75
|
exp44 |
|
77 |
76
|
imp4a |
|
78 |
77
|
rexlimdv |
|
79 |
19 78
|
mpd |
|
80 |
15 79
|
mtod |
|
81 |
80
|
pm2.21d |
|
82 |
81
|
imp |
|