Metamath Proof Explorer


Theorem dihord6apre

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord6apre.b B = Base K
dihord6apre.l ˙ = K
dihord6apre.a A = Atoms K
dihord6apre.h H = LHyp K
dihord6apre.p P = oc K W
dihord6apre.o O = h T I B
dihord6apre.t T = LTrn K W
dihord6apre.e E = TEndo K W
dihord6apre.i I = DIsoH K W
dihord6apre.u U = DVecH K W
dihord6apre.s ˙ = LSSum U
dihord6apre.g G = ι h T | h P = q
Assertion dihord6apre K HL W H X B ¬ X ˙ W Y B Y ˙ W I X I Y X ˙ Y

Proof

Step Hyp Ref Expression
1 dihord6apre.b B = Base K
2 dihord6apre.l ˙ = K
3 dihord6apre.a A = Atoms K
4 dihord6apre.h H = LHyp K
5 dihord6apre.p P = oc K W
6 dihord6apre.o O = h T I B
7 dihord6apre.t T = LTrn K W
8 dihord6apre.e E = TEndo K W
9 dihord6apre.i I = DIsoH K W
10 dihord6apre.u U = DVecH K W
11 dihord6apre.s ˙ = LSSum U
12 dihord6apre.g G = ι h T | h P = q
13 1 4 7 8 6 tendo1ne0 K HL W H I T O
14 13 3ad2ant1 K HL W H X B ¬ X ˙ W Y B Y ˙ W I T O
15 14 neneqd K HL W H X B ¬ X ˙ W Y B Y ˙ W ¬ I T = O
16 eqid join K = join K
17 eqid meet K = meet K
18 1 2 16 17 3 4 lhpmcvr2 K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q join K X meet K W = X
19 18 3adant3 K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X
20 simpl1 K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X K HL W H
21 simpl2 K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X X B ¬ X ˙ W
22 simpr K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X q A ¬ q ˙ W q join K X meet K W = X
23 eqid DIsoB K W = DIsoB K W
24 eqid DIsoC K W = DIsoC K W
25 1 2 16 17 3 4 9 23 24 10 11 dihvalcq K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q join K X meet K W = X I X = DIsoC K W q ˙ DIsoB K W X meet K W
26 20 21 22 25 syl3anc K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I X = DIsoC K W q ˙ DIsoB K W X meet K W
27 simpl3 K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X Y B Y ˙ W
28 1 2 4 9 23 dihvalb K HL W H Y B Y ˙ W I Y = DIsoB K W Y
29 20 27 28 syl2anc K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I Y = DIsoB K W Y
30 26 29 sseq12d K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I X I Y DIsoC K W q ˙ DIsoB K W X meet K W DIsoB K W Y
31 4 10 20 dvhlmod K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X U LMod
32 eqid LSubSp U = LSubSp U
33 32 lsssssubg U LMod LSubSp U SubGrp U
34 31 33 syl K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X LSubSp U SubGrp U
35 simprl K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X q A ¬ q ˙ W
36 2 3 4 10 24 32 diclss K HL W H q A ¬ q ˙ W DIsoC K W q LSubSp U
37 20 35 36 syl2anc K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X DIsoC K W q LSubSp U
38 34 37 sseldd K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X DIsoC K W q SubGrp U
39 simpl1l K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X K HL
40 39 hllatd K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X K Lat
41 simpl2l K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X X B
42 simpl1r K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X W H
43 1 4 lhpbase W H W B
44 42 43 syl K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X W B
45 1 17 latmcl K Lat X B W B X meet K W B
46 40 41 44 45 syl3anc K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X X meet K W B
47 1 2 17 latmle2 K Lat X B W B X meet K W ˙ W
48 40 41 44 47 syl3anc K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X X meet K W ˙ W
49 1 2 4 10 23 32 diblss K HL W H X meet K W B X meet K W ˙ W DIsoB K W X meet K W LSubSp U
50 20 46 48 49 syl12anc K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X DIsoB K W X meet K W LSubSp U
51 34 50 sseldd K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X DIsoB K W X meet K W SubGrp U
52 11 lsmub1 DIsoC K W q SubGrp U DIsoB K W X meet K W SubGrp U DIsoC K W q DIsoC K W q ˙ DIsoB K W X meet K W
53 38 51 52 syl2anc K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X DIsoC K W q DIsoC K W q ˙ DIsoB K W X meet K W
54 sstr DIsoC K W q DIsoC K W q ˙ DIsoB K W X meet K W DIsoC K W q ˙ DIsoB K W X meet K W DIsoB K W Y DIsoC K W q DIsoB K W Y
55 eqidd K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I T G = I T G
56 4 7 8 tendoidcl K HL W H I T E
57 20 56 syl K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I T E
58 fvex I T G V
59 7 fvexi T V
60 resiexg T V I T V
61 59 60 ax-mp I T V
62 2 3 4 5 7 8 24 12 58 61 dicopelval2 K HL W H q A ¬ q ˙ W I T G I T DIsoC K W q I T G = I T G I T E
63 20 35 62 syl2anc K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I T G I T DIsoC K W q I T G = I T G I T E
64 55 57 63 mpbir2and K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I T G I T DIsoC K W q
65 ssel2 DIsoC K W q DIsoB K W Y I T G I T DIsoC K W q I T G I T DIsoB K W Y
66 eqid DIsoA K W = DIsoA K W
67 1 2 4 7 6 66 23 dibopelval2 K HL W H Y B Y ˙ W I T G I T DIsoB K W Y I T G DIsoA K W Y I T = O
68 20 27 67 syl2anc K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I T G I T DIsoB K W Y I T G DIsoA K W Y I T = O
69 simpr I T G DIsoA K W Y I T = O I T = O
70 68 69 syl6bi K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I T G I T DIsoB K W Y I T = O
71 65 70 syl5 K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X DIsoC K W q DIsoB K W Y I T G I T DIsoC K W q I T = O
72 64 71 mpan2d K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X DIsoC K W q DIsoB K W Y I T = O
73 54 72 syl5 K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X DIsoC K W q DIsoC K W q ˙ DIsoB K W X meet K W DIsoC K W q ˙ DIsoB K W X meet K W DIsoB K W Y I T = O
74 53 73 mpand K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X DIsoC K W q ˙ DIsoB K W X meet K W DIsoB K W Y I T = O
75 30 74 sylbid K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I X I Y I T = O
76 75 exp44 K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I X I Y I T = O
77 76 imp4a K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I X I Y I T = O
78 77 rexlimdv K HL W H X B ¬ X ˙ W Y B Y ˙ W q A ¬ q ˙ W q join K X meet K W = X I X I Y I T = O
79 19 78 mpd K HL W H X B ¬ X ˙ W Y B Y ˙ W I X I Y I T = O
80 15 79 mtod K HL W H X B ¬ X ˙ W Y B Y ˙ W ¬ I X I Y
81 80 pm2.21d K HL W H X B ¬ X ˙ W Y B Y ˙ W I X I Y X ˙ Y
82 81 imp K HL W H X B ¬ X ˙ W Y B Y ˙ W I X I Y X ˙ Y