Step |
Hyp |
Ref |
Expression |
1 |
|
dihord6apre.b |
|- B = ( Base ` K ) |
2 |
|
dihord6apre.l |
|- .<_ = ( le ` K ) |
3 |
|
dihord6apre.a |
|- A = ( Atoms ` K ) |
4 |
|
dihord6apre.h |
|- H = ( LHyp ` K ) |
5 |
|
dihord6apre.p |
|- P = ( ( oc ` K ) ` W ) |
6 |
|
dihord6apre.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
7 |
|
dihord6apre.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
dihord6apre.e |
|- E = ( ( TEndo ` K ) ` W ) |
9 |
|
dihord6apre.i |
|- I = ( ( DIsoH ` K ) ` W ) |
10 |
|
dihord6apre.u |
|- U = ( ( DVecH ` K ) ` W ) |
11 |
|
dihord6apre.s |
|- .(+) = ( LSSum ` U ) |
12 |
|
dihord6apre.g |
|- G = ( iota_ h e. T ( h ` P ) = q ) |
13 |
1 4 7 8 6
|
tendo1ne0 |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) =/= O ) |
14 |
13
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( _I |` T ) =/= O ) |
15 |
14
|
neneqd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> -. ( _I |` T ) = O ) |
16 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
17 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
18 |
1 2 16 17 3 4
|
lhpmcvr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. q e. A ( -. q .<_ W /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) |
19 |
18
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> E. q e. A ( -. q .<_ W /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) |
20 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( X e. B /\ -. X .<_ W ) ) |
22 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) |
23 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
24 |
|
eqid |
|- ( ( DIsoC ` K ) ` W ) = ( ( DIsoC ` K ) ` W ) |
25 |
1 2 16 17 3 4 9 23 24 10 11
|
dihvalcq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( I ` X ) = ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) ) |
26 |
20 21 22 25
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( I ` X ) = ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) ) |
27 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( Y e. B /\ Y .<_ W ) ) |
28 |
1 2 4 9 23
|
dihvalb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( I ` Y ) = ( ( ( DIsoB ` K ) ` W ) ` Y ) ) |
29 |
20 27 28
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( I ` Y ) = ( ( ( DIsoB ` K ) ` W ) ` Y ) ) |
30 |
26 29
|
sseq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( I ` X ) C_ ( I ` Y ) <-> ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) C_ ( ( ( DIsoB ` K ) ` W ) ` Y ) ) ) |
31 |
4 10 20
|
dvhlmod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> U e. LMod ) |
32 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
33 |
32
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
34 |
31 33
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
35 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( q e. A /\ -. q .<_ W ) ) |
36 |
2 3 4 10 24 32
|
diclss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( ( ( DIsoC ` K ) ` W ) ` q ) e. ( LSubSp ` U ) ) |
37 |
20 35 36
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( DIsoC ` K ) ` W ) ` q ) e. ( LSubSp ` U ) ) |
38 |
34 37
|
sseldd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( DIsoC ` K ) ` W ) ` q ) e. ( SubGrp ` U ) ) |
39 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> K e. HL ) |
40 |
39
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> K e. Lat ) |
41 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> X e. B ) |
42 |
|
simpl1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> W e. H ) |
43 |
1 4
|
lhpbase |
|- ( W e. H -> W e. B ) |
44 |
42 43
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> W e. B ) |
45 |
1 17
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ( meet ` K ) W ) e. B ) |
46 |
40 41 44 45
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( X ( meet ` K ) W ) e. B ) |
47 |
1 2 17
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ( meet ` K ) W ) .<_ W ) |
48 |
40 41 44 47
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( X ( meet ` K ) W ) .<_ W ) |
49 |
1 2 4 10 23 32
|
diblss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( X ( meet ` K ) W ) e. B /\ ( X ( meet ` K ) W ) .<_ W ) ) -> ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) e. ( LSubSp ` U ) ) |
50 |
20 46 48 49
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) e. ( LSubSp ` U ) ) |
51 |
34 50
|
sseldd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) e. ( SubGrp ` U ) ) |
52 |
11
|
lsmub1 |
|- ( ( ( ( ( DIsoC ` K ) ` W ) ` q ) e. ( SubGrp ` U ) /\ ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) e. ( SubGrp ` U ) ) -> ( ( ( DIsoC ` K ) ` W ) ` q ) C_ ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) ) |
53 |
38 51 52
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( DIsoC ` K ) ` W ) ` q ) C_ ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) ) |
54 |
|
sstr |
|- ( ( ( ( ( DIsoC ` K ) ` W ) ` q ) C_ ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) /\ ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) C_ ( ( ( DIsoB ` K ) ` W ) ` Y ) ) -> ( ( ( DIsoC ` K ) ` W ) ` q ) C_ ( ( ( DIsoB ` K ) ` W ) ` Y ) ) |
55 |
|
eqidd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( _I |` T ) ` G ) = ( ( _I |` T ) ` G ) ) |
56 |
4 7 8
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. E ) |
57 |
20 56
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( _I |` T ) e. E ) |
58 |
|
fvex |
|- ( ( _I |` T ) ` G ) e. _V |
59 |
7
|
fvexi |
|- T e. _V |
60 |
|
resiexg |
|- ( T e. _V -> ( _I |` T ) e. _V ) |
61 |
59 60
|
ax-mp |
|- ( _I |` T ) e. _V |
62 |
2 3 4 5 7 8 24 12 58 61
|
dicopelval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( <. ( ( _I |` T ) ` G ) , ( _I |` T ) >. e. ( ( ( DIsoC ` K ) ` W ) ` q ) <-> ( ( ( _I |` T ) ` G ) = ( ( _I |` T ) ` G ) /\ ( _I |` T ) e. E ) ) ) |
63 |
20 35 62
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( <. ( ( _I |` T ) ` G ) , ( _I |` T ) >. e. ( ( ( DIsoC ` K ) ` W ) ` q ) <-> ( ( ( _I |` T ) ` G ) = ( ( _I |` T ) ` G ) /\ ( _I |` T ) e. E ) ) ) |
64 |
55 57 63
|
mpbir2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> <. ( ( _I |` T ) ` G ) , ( _I |` T ) >. e. ( ( ( DIsoC ` K ) ` W ) ` q ) ) |
65 |
|
ssel2 |
|- ( ( ( ( ( DIsoC ` K ) ` W ) ` q ) C_ ( ( ( DIsoB ` K ) ` W ) ` Y ) /\ <. ( ( _I |` T ) ` G ) , ( _I |` T ) >. e. ( ( ( DIsoC ` K ) ` W ) ` q ) ) -> <. ( ( _I |` T ) ` G ) , ( _I |` T ) >. e. ( ( ( DIsoB ` K ) ` W ) ` Y ) ) |
66 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
67 |
1 2 4 7 6 66 23
|
dibopelval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( <. ( ( _I |` T ) ` G ) , ( _I |` T ) >. e. ( ( ( DIsoB ` K ) ` W ) ` Y ) <-> ( ( ( _I |` T ) ` G ) e. ( ( ( DIsoA ` K ) ` W ) ` Y ) /\ ( _I |` T ) = O ) ) ) |
68 |
20 27 67
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( <. ( ( _I |` T ) ` G ) , ( _I |` T ) >. e. ( ( ( DIsoB ` K ) ` W ) ` Y ) <-> ( ( ( _I |` T ) ` G ) e. ( ( ( DIsoA ` K ) ` W ) ` Y ) /\ ( _I |` T ) = O ) ) ) |
69 |
|
simpr |
|- ( ( ( ( _I |` T ) ` G ) e. ( ( ( DIsoA ` K ) ` W ) ` Y ) /\ ( _I |` T ) = O ) -> ( _I |` T ) = O ) |
70 |
68 69
|
syl6bi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( <. ( ( _I |` T ) ` G ) , ( _I |` T ) >. e. ( ( ( DIsoB ` K ) ` W ) ` Y ) -> ( _I |` T ) = O ) ) |
71 |
65 70
|
syl5 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( ( ( DIsoC ` K ) ` W ) ` q ) C_ ( ( ( DIsoB ` K ) ` W ) ` Y ) /\ <. ( ( _I |` T ) ` G ) , ( _I |` T ) >. e. ( ( ( DIsoC ` K ) ` W ) ` q ) ) -> ( _I |` T ) = O ) ) |
72 |
64 71
|
mpan2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( ( DIsoC ` K ) ` W ) ` q ) C_ ( ( ( DIsoB ` K ) ` W ) ` Y ) -> ( _I |` T ) = O ) ) |
73 |
54 72
|
syl5 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( ( ( DIsoC ` K ) ` W ) ` q ) C_ ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) /\ ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) C_ ( ( ( DIsoB ` K ) ` W ) ` Y ) ) -> ( _I |` T ) = O ) ) |
74 |
53 73
|
mpand |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( ( ( DIsoC ` K ) ` W ) ` q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ( meet ` K ) W ) ) ) C_ ( ( ( DIsoB ` K ) ` W ) ` Y ) -> ( _I |` T ) = O ) ) |
75 |
30 74
|
sylbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( I ` X ) C_ ( I ` Y ) -> ( _I |` T ) = O ) ) |
76 |
75
|
exp44 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( q e. A -> ( -. q .<_ W -> ( ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X -> ( ( I ` X ) C_ ( I ` Y ) -> ( _I |` T ) = O ) ) ) ) ) |
77 |
76
|
imp4a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( q e. A -> ( ( -. q .<_ W /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) -> ( ( I ` X ) C_ ( I ` Y ) -> ( _I |` T ) = O ) ) ) ) |
78 |
77
|
rexlimdv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( E. q e. A ( -. q .<_ W /\ ( q ( join ` K ) ( X ( meet ` K ) W ) ) = X ) -> ( ( I ` X ) C_ ( I ` Y ) -> ( _I |` T ) = O ) ) ) |
79 |
19 78
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( ( I ` X ) C_ ( I ` Y ) -> ( _I |` T ) = O ) ) |
80 |
15 79
|
mtod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> -. ( I ` X ) C_ ( I ` Y ) ) |
81 |
80
|
pm2.21d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) -> ( ( I ` X ) C_ ( I ` Y ) -> X .<_ Y ) ) |
82 |
81
|
imp |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Y e. B /\ Y .<_ W ) ) /\ ( I ` X ) C_ ( I ` Y ) ) -> X .<_ Y ) |