Metamath Proof Explorer


Theorem dihord3

Description: The isomorphism H for a lattice K is order-preserving in the region under co-atom W . (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihord3.b B = Base K
dihord3.l ˙ = K
dihord3.h H = LHyp K
dihord3.i I = DIsoH K W
Assertion dihord3 K HL W H X B X ˙ W Y B Y ˙ W I X I Y X ˙ Y

Proof

Step Hyp Ref Expression
1 dihord3.b B = Base K
2 dihord3.l ˙ = K
3 dihord3.h H = LHyp K
4 dihord3.i I = DIsoH K W
5 eqid DIsoB K W = DIsoB K W
6 1 2 3 4 5 dihvalb K HL W H X B X ˙ W I X = DIsoB K W X
7 6 3adant3 K HL W H X B X ˙ W Y B Y ˙ W I X = DIsoB K W X
8 1 2 3 4 5 dihvalb K HL W H Y B Y ˙ W I Y = DIsoB K W Y
9 8 3adant2 K HL W H X B X ˙ W Y B Y ˙ W I Y = DIsoB K W Y
10 7 9 sseq12d K HL W H X B X ˙ W Y B Y ˙ W I X I Y DIsoB K W X DIsoB K W Y
11 1 2 3 5 dibord K HL W H X B X ˙ W Y B Y ˙ W DIsoB K W X DIsoB K W Y X ˙ Y
12 10 11 bitrd K HL W H X B X ˙ W Y B Y ˙ W I X I Y X ˙ Y