Step |
Hyp |
Ref |
Expression |
1 |
|
dihord3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihord3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihord3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihord3.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
8 |
1 2 3 4 5
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑌 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) ) |
9 |
8
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑌 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) ) |
10 |
7 9
|
sseq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ⊆ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) ) ) |
11 |
1 2 3 5
|
dibord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ⊆ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
12 |
10 11
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |