Metamath Proof Explorer


Theorem dihord6b

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord3.b 𝐵 = ( Base ‘ 𝐾 )
dihord3.l = ( le ‘ 𝐾 )
dihord3.h 𝐻 = ( LHyp ‘ 𝐾 )
dihord3.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihord6b ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ 𝑋 𝑌 ) → ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) )

Proof

Step Hyp Ref Expression
1 dihord3.b 𝐵 = ( Base ‘ 𝐾 )
2 dihord3.l = ( le ‘ 𝐾 )
3 dihord3.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihord3.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ¬ 𝑋 𝑊 )
6 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝑌 𝑊 )
7 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝐾 ∈ HL )
8 7 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝐾 ∈ Lat )
9 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝑋𝐵 )
10 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝑌𝐵 )
11 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝑊𝐻 )
12 1 3 lhpbase ( 𝑊𝐻𝑊𝐵 )
13 11 12 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝑊𝐵 )
14 1 2 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑊𝐵 ) ) → ( ( 𝑋 𝑌𝑌 𝑊 ) → 𝑋 𝑊 ) )
15 8 9 10 13 14 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝑋 𝑌𝑌 𝑊 ) → 𝑋 𝑊 ) )
16 6 15 mpan2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝑋 𝑌𝑋 𝑊 ) )
17 5 16 mtod ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ¬ 𝑋 𝑌 )
18 17 pm2.21d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝑋 𝑌 → ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ) )
19 18 imp ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ 𝑋 𝑌 ) → ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) )