Metamath Proof Explorer


Theorem dihord6b

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord3.b B=BaseK
dihord3.l ˙=K
dihord3.h H=LHypK
dihord3.i I=DIsoHKW
Assertion dihord6b KHLWHXB¬X˙WYBY˙WX˙YIXIY

Proof

Step Hyp Ref Expression
1 dihord3.b B=BaseK
2 dihord3.l ˙=K
3 dihord3.h H=LHypK
4 dihord3.i I=DIsoHKW
5 simp2r KHLWHXB¬X˙WYBY˙W¬X˙W
6 simp3r KHLWHXB¬X˙WYBY˙WY˙W
7 simp1l KHLWHXB¬X˙WYBY˙WKHL
8 7 hllatd KHLWHXB¬X˙WYBY˙WKLat
9 simp2l KHLWHXB¬X˙WYBY˙WXB
10 simp3l KHLWHXB¬X˙WYBY˙WYB
11 simp1r KHLWHXB¬X˙WYBY˙WWH
12 1 3 lhpbase WHWB
13 11 12 syl KHLWHXB¬X˙WYBY˙WWB
14 1 2 lattr KLatXBYBWBX˙YY˙WX˙W
15 8 9 10 13 14 syl13anc KHLWHXB¬X˙WYBY˙WX˙YY˙WX˙W
16 6 15 mpan2d KHLWHXB¬X˙WYBY˙WX˙YX˙W
17 5 16 mtod KHLWHXB¬X˙WYBY˙W¬X˙Y
18 17 pm2.21d KHLWHXB¬X˙WYBY˙WX˙YIXIY
19 18 imp KHLWHXB¬X˙WYBY˙WX˙YIXIY