Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihord3.b | |
|
dihord3.l | |
||
dihord3.h | |
||
dihord3.i | |
||
Assertion | dihord6b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihord3.b | |
|
2 | dihord3.l | |
|
3 | dihord3.h | |
|
4 | dihord3.i | |
|
5 | simp2r | |
|
6 | simp3r | |
|
7 | simp1l | |
|
8 | 7 | hllatd | |
9 | simp2l | |
|
10 | simp3l | |
|
11 | simp1r | |
|
12 | 1 3 | lhpbase | |
13 | 11 12 | syl | |
14 | 1 2 | lattr | |
15 | 8 9 10 13 14 | syl13anc | |
16 | 6 15 | mpan2d | |
17 | 5 16 | mtod | |
18 | 17 | pm2.21d | |
19 | 18 | imp | |