Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem6.b |
|
2 |
|
dihglblem6.l |
|
3 |
|
dihglblem6.m |
|
4 |
|
dihglblem6.a |
|
5 |
|
dihglblem6.g |
|
6 |
|
dihglblem6.h |
|
7 |
|
dihglblem6.i |
|
8 |
|
dihglblem6.u |
|
9 |
|
dihglblem6.s |
|
10 |
|
dihglblem6.d |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
1 2 11 5 6 12 13 7
|
dihglblem4 |
|
15 |
|
fal |
|
16 |
|
simpll |
|
17 |
6 8 16
|
dvhlmod |
|
18 |
|
simplll |
|
19 |
|
hlclat |
|
20 |
18 19
|
syl |
|
21 |
|
simplrl |
|
22 |
1 5
|
clatglbcl |
|
23 |
20 21 22
|
syl2anc |
|
24 |
1 6 7 8 9
|
dihlss |
|
25 |
16 23 24
|
syl2anc |
|
26 |
1 5 6 8 7 9
|
dihglblem5 |
|
27 |
26
|
adantr |
|
28 |
|
simpr |
|
29 |
9 10 17 25 27 28
|
lpssat |
|
30 |
29
|
ex |
|
31 |
|
simp1l |
|
32 |
6 8 7 10
|
dih1dimat |
|
33 |
32
|
adantlr |
|
34 |
33
|
3adant3 |
|
35 |
6 7
|
dihcnvid2 |
|
36 |
31 34 35
|
syl2anc |
|
37 |
|
simp3l |
|
38 |
|
ssiin |
|
39 |
37 38
|
sylib |
|
40 |
|
simplll |
|
41 |
|
simpll |
|
42 |
1 6 7 8 9
|
dihf11 |
|
43 |
|
f1f1orn |
|
44 |
41 42 43
|
3syl |
|
45 |
|
f1ocnvdm |
|
46 |
44 33 45
|
syl2anc |
|
47 |
46
|
adantr |
|
48 |
|
simplrl |
|
49 |
48
|
sselda |
|
50 |
1 2 6 7
|
dihord |
|
51 |
40 47 49 50
|
syl3anc |
|
52 |
41 33 35
|
syl2anc |
|
53 |
52
|
adantr |
|
54 |
53
|
sseq1d |
|
55 |
51 54
|
bitr3d |
|
56 |
55
|
ralbidva |
|
57 |
56
|
3adant3 |
|
58 |
39 57
|
mpbird |
|
59 |
|
simp1ll |
|
60 |
59 19
|
syl |
|
61 |
46
|
3adant3 |
|
62 |
|
simp1rl |
|
63 |
1 2 5
|
clatleglb |
|
64 |
60 61 62 63
|
syl3anc |
|
65 |
58 64
|
mpbird |
|
66 |
60 62 22
|
syl2anc |
|
67 |
1 2 6 7
|
dihord |
|
68 |
31 61 66 67
|
syl3anc |
|
69 |
65 68
|
mpbird |
|
70 |
36 69
|
eqsstrrd |
|
71 |
|
simp3r |
|
72 |
70 71
|
pm2.21fal |
|
73 |
72
|
rexlimdv3a |
|
74 |
30 73
|
syld |
|
75 |
15 74
|
mtoi |
|
76 |
|
dfpss3 |
|
77 |
76
|
notbii |
|
78 |
|
iman |
|
79 |
|
anclb |
|
80 |
77 78 79
|
3bitr2i |
|
81 |
75 80
|
sylib |
|
82 |
14 81
|
mpd |
|
83 |
|
eqss |
|
84 |
82 83
|
sylibr |
|