Metamath Proof Explorer


Theorem dihglblem6

Description: Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014)

Ref Expression
Hypotheses dihglblem6.b B=BaseK
dihglblem6.l ˙=K
dihglblem6.m ˙=meetK
dihglblem6.a A=AtomsK
dihglblem6.g G=glbK
dihglblem6.h H=LHypK
dihglblem6.i I=DIsoHKW
dihglblem6.u U=DVecHKW
dihglblem6.s P=LSubSpU
dihglblem6.d D=LSAtomsU
Assertion dihglblem6 KHLWHSBSIGS=xSIx

Proof

Step Hyp Ref Expression
1 dihglblem6.b B=BaseK
2 dihglblem6.l ˙=K
3 dihglblem6.m ˙=meetK
4 dihglblem6.a A=AtomsK
5 dihglblem6.g G=glbK
6 dihglblem6.h H=LHypK
7 dihglblem6.i I=DIsoHKW
8 dihglblem6.u U=DVecHKW
9 dihglblem6.s P=LSubSpU
10 dihglblem6.d D=LSAtomsU
11 eqid meetK=meetK
12 eqid uB|vSu=vmeetKW=uB|vSu=vmeetKW
13 eqid DIsoBKW=DIsoBKW
14 1 2 11 5 6 12 13 7 dihglblem4 KHLWHSBSIGSxSIx
15 fal ¬
16 simpll KHLWHSBSIGSxSIxKHLWH
17 6 8 16 dvhlmod KHLWHSBSIGSxSIxULMod
18 simplll KHLWHSBSIGSxSIxKHL
19 hlclat KHLKCLat
20 18 19 syl KHLWHSBSIGSxSIxKCLat
21 simplrl KHLWHSBSIGSxSIxSB
22 1 5 clatglbcl KCLatSBGSB
23 20 21 22 syl2anc KHLWHSBSIGSxSIxGSB
24 1 6 7 8 9 dihlss KHLWHGSBIGSP
25 16 23 24 syl2anc KHLWHSBSIGSxSIxIGSP
26 1 5 6 8 7 9 dihglblem5 KHLWHSBSxSIxP
27 26 adantr KHLWHSBSIGSxSIxxSIxP
28 simpr KHLWHSBSIGSxSIxIGSxSIx
29 9 10 17 25 27 28 lpssat KHLWHSBSIGSxSIxpDpxSIx¬pIGS
30 29 ex KHLWHSBSIGSxSIxpDpxSIx¬pIGS
31 simp1l KHLWHSBSpDpxSIx¬pIGSKHLWH
32 6 8 7 10 dih1dimat KHLWHpDpranI
33 32 adantlr KHLWHSBSpDpranI
34 33 3adant3 KHLWHSBSpDpxSIx¬pIGSpranI
35 6 7 dihcnvid2 KHLWHpranIII-1p=p
36 31 34 35 syl2anc KHLWHSBSpDpxSIx¬pIGSII-1p=p
37 simp3l KHLWHSBSpDpxSIx¬pIGSpxSIx
38 ssiin pxSIxxSpIx
39 37 38 sylib KHLWHSBSpDpxSIx¬pIGSxSpIx
40 simplll KHLWHSBSpDxSKHLWH
41 simpll KHLWHSBSpDKHLWH
42 1 6 7 8 9 dihf11 KHLWHI:B1-1P
43 f1f1orn I:B1-1PI:B1-1 ontoranI
44 41 42 43 3syl KHLWHSBSpDI:B1-1 ontoranI
45 f1ocnvdm I:B1-1 ontoranIpranII-1pB
46 44 33 45 syl2anc KHLWHSBSpDI-1pB
47 46 adantr KHLWHSBSpDxSI-1pB
48 simplrl KHLWHSBSpDSB
49 48 sselda KHLWHSBSpDxSxB
50 1 2 6 7 dihord KHLWHI-1pBxBII-1pIxI-1p˙x
51 40 47 49 50 syl3anc KHLWHSBSpDxSII-1pIxI-1p˙x
52 41 33 35 syl2anc KHLWHSBSpDII-1p=p
53 52 adantr KHLWHSBSpDxSII-1p=p
54 53 sseq1d KHLWHSBSpDxSII-1pIxpIx
55 51 54 bitr3d KHLWHSBSpDxSI-1p˙xpIx
56 55 ralbidva KHLWHSBSpDxSI-1p˙xxSpIx
57 56 3adant3 KHLWHSBSpDpxSIx¬pIGSxSI-1p˙xxSpIx
58 39 57 mpbird KHLWHSBSpDpxSIx¬pIGSxSI-1p˙x
59 simp1ll KHLWHSBSpDpxSIx¬pIGSKHL
60 59 19 syl KHLWHSBSpDpxSIx¬pIGSKCLat
61 46 3adant3 KHLWHSBSpDpxSIx¬pIGSI-1pB
62 simp1rl KHLWHSBSpDpxSIx¬pIGSSB
63 1 2 5 clatleglb KCLatI-1pBSBI-1p˙GSxSI-1p˙x
64 60 61 62 63 syl3anc KHLWHSBSpDpxSIx¬pIGSI-1p˙GSxSI-1p˙x
65 58 64 mpbird KHLWHSBSpDpxSIx¬pIGSI-1p˙GS
66 60 62 22 syl2anc KHLWHSBSpDpxSIx¬pIGSGSB
67 1 2 6 7 dihord KHLWHI-1pBGSBII-1pIGSI-1p˙GS
68 31 61 66 67 syl3anc KHLWHSBSpDpxSIx¬pIGSII-1pIGSI-1p˙GS
69 65 68 mpbird KHLWHSBSpDpxSIx¬pIGSII-1pIGS
70 36 69 eqsstrrd KHLWHSBSpDpxSIx¬pIGSpIGS
71 simp3r KHLWHSBSpDpxSIx¬pIGS¬pIGS
72 70 71 pm2.21fal KHLWHSBSpDpxSIx¬pIGS
73 72 rexlimdv3a KHLWHSBSpDpxSIx¬pIGS
74 30 73 syld KHLWHSBSIGSxSIx
75 15 74 mtoi KHLWHSBS¬IGSxSIx
76 dfpss3 IGSxSIxIGSxSIx¬xSIxIGS
77 76 notbii ¬IGSxSIx¬IGSxSIx¬xSIxIGS
78 iman IGSxSIxxSIxIGS¬IGSxSIx¬xSIxIGS
79 anclb IGSxSIxxSIxIGSIGSxSIxIGSxSIxxSIxIGS
80 77 78 79 3bitr2i ¬IGSxSIxIGSxSIxIGSxSIxxSIxIGS
81 75 80 sylib KHLWHSBSIGSxSIxIGSxSIxxSIxIGS
82 14 81 mpd KHLWHSBSIGSxSIxxSIxIGS
83 eqss IGS=xSIxIGSxSIxxSIxIGS
84 82 83 sylibr KHLWHSBSIGS=xSIx