Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihglb
Next ⟩
dihglb2
Metamath Proof Explorer
Ascii
Unicode
Theorem
dihglb
Description:
Isomorphism H of a lattice glb.
(Contributed by
NM
, 11-Apr-2014)
Ref
Expression
Hypotheses
dihglb.b
⊢
B
=
Base
K
dihglb.g
⊢
G
=
glb
⁡
K
dihglb.h
⊢
H
=
LHyp
⁡
K
dihglb.i
⊢
I
=
DIsoH
⁡
K
⁡
W
Assertion
dihglb
⊢
K
∈
HL
∧
W
∈
H
∧
S
⊆
B
∧
S
≠
∅
→
I
⁡
G
⁡
S
=
⋂
x
∈
S
I
⁡
x
Proof
Step
Hyp
Ref
Expression
1
dihglb.b
⊢
B
=
Base
K
2
dihglb.g
⊢
G
=
glb
⁡
K
3
dihglb.h
⊢
H
=
LHyp
⁡
K
4
dihglb.i
⊢
I
=
DIsoH
⁡
K
⁡
W
5
eqid
⊢
≤
K
=
≤
K
6
eqid
⊢
meet
⁡
K
=
meet
⁡
K
7
eqid
⊢
Atoms
⁡
K
=
Atoms
⁡
K
8
eqid
⊢
DVecH
⁡
K
⁡
W
=
DVecH
⁡
K
⁡
W
9
eqid
⊢
LSubSp
⁡
DVecH
⁡
K
⁡
W
=
LSubSp
⁡
DVecH
⁡
K
⁡
W
10
eqid
⊢
LSAtoms
⁡
DVecH
⁡
K
⁡
W
=
LSAtoms
⁡
DVecH
⁡
K
⁡
W
11
1
5
6
7
2
3
4
8
9
10
dihglblem6
⊢
K
∈
HL
∧
W
∈
H
∧
S
⊆
B
∧
S
≠
∅
→
I
⁡
G
⁡
S
=
⋂
x
∈
S
I
⁡
x