Metamath Proof Explorer


Theorem dihglb

Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dihglb.b B = Base K
dihglb.g G = glb K
dihglb.h H = LHyp K
dihglb.i I = DIsoH K W
Assertion dihglb K HL W H S B S I G S = x S I x

Proof

Step Hyp Ref Expression
1 dihglb.b B = Base K
2 dihglb.g G = glb K
3 dihglb.h H = LHyp K
4 dihglb.i I = DIsoH K W
5 eqid K = K
6 eqid meet K = meet K
7 eqid Atoms K = Atoms K
8 eqid DVecH K W = DVecH K W
9 eqid LSubSp DVecH K W = LSubSp DVecH K W
10 eqid LSAtoms DVecH K W = LSAtoms DVecH K W
11 1 5 6 7 2 3 4 8 9 10 dihglblem6 K HL W H S B S I G S = x S I x