| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihglb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihglb.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 3 |
|
dihglb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dihglb.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 6 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 7 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 8 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 10 |
|
eqid |
⊢ ( LSAtoms ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSAtoms ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 11 |
1 5 6 7 2 3 4 8 9 10
|
dihglblem6 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ) |