Metamath Proof Explorer


Theorem dihglb

Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dihglb.b
|- B = ( Base ` K )
dihglb.g
|- G = ( glb ` K )
dihglb.h
|- H = ( LHyp ` K )
dihglb.i
|- I = ( ( DIsoH ` K ) ` W )
Assertion dihglb
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( I ` ( G ` S ) ) = |^|_ x e. S ( I ` x ) )

Proof

Step Hyp Ref Expression
1 dihglb.b
 |-  B = ( Base ` K )
2 dihglb.g
 |-  G = ( glb ` K )
3 dihglb.h
 |-  H = ( LHyp ` K )
4 dihglb.i
 |-  I = ( ( DIsoH ` K ) ` W )
5 eqid
 |-  ( le ` K ) = ( le ` K )
6 eqid
 |-  ( meet ` K ) = ( meet ` K )
7 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
8 eqid
 |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W )
9 eqid
 |-  ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) )
10 eqid
 |-  ( LSAtoms ` ( ( DVecH ` K ) ` W ) ) = ( LSAtoms ` ( ( DVecH ` K ) ` W ) )
11 1 5 6 7 2 3 4 8 9 10 dihglblem6
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( I ` ( G ` S ) ) = |^|_ x e. S ( I ` x ) )