Step |
Hyp |
Ref |
Expression |
1 |
|
dihglb.b |
|- B = ( Base ` K ) |
2 |
|
dihglb.g |
|- G = ( glb ` K ) |
3 |
|
dihglb.h |
|- H = ( LHyp ` K ) |
4 |
|
dihglb.i |
|- I = ( ( DIsoH ` K ) ` W ) |
5 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
6 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
7 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
8 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
9 |
|
eqid |
|- ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) ) |
10 |
|
eqid |
|- ( LSAtoms ` ( ( DVecH ` K ) ` W ) ) = ( LSAtoms ` ( ( DVecH ` K ) ` W ) ) |
11 |
1 5 6 7 2 3 4 8 9 10
|
dihglblem6 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( I ` ( G ` S ) ) = |^|_ x e. S ( I ` x ) ) |