Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem6.b |
|- B = ( Base ` K ) |
2 |
|
dihglblem6.l |
|- .<_ = ( le ` K ) |
3 |
|
dihglblem6.m |
|- ./\ = ( meet ` K ) |
4 |
|
dihglblem6.a |
|- A = ( Atoms ` K ) |
5 |
|
dihglblem6.g |
|- G = ( glb ` K ) |
6 |
|
dihglblem6.h |
|- H = ( LHyp ` K ) |
7 |
|
dihglblem6.i |
|- I = ( ( DIsoH ` K ) ` W ) |
8 |
|
dihglblem6.u |
|- U = ( ( DVecH ` K ) ` W ) |
9 |
|
dihglblem6.s |
|- P = ( LSubSp ` U ) |
10 |
|
dihglblem6.d |
|- D = ( LSAtoms ` U ) |
11 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
12 |
|
eqid |
|- { u e. B | E. v e. S u = ( v ( meet ` K ) W ) } = { u e. B | E. v e. S u = ( v ( meet ` K ) W ) } |
13 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
14 |
1 2 11 5 6 12 13 7
|
dihglblem4 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) ) |
15 |
|
fal |
|- -. F. |
16 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> ( K e. HL /\ W e. H ) ) |
17 |
6 8 16
|
dvhlmod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> U e. LMod ) |
18 |
|
simplll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> K e. HL ) |
19 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
20 |
18 19
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> K e. CLat ) |
21 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> S C_ B ) |
22 |
1 5
|
clatglbcl |
|- ( ( K e. CLat /\ S C_ B ) -> ( G ` S ) e. B ) |
23 |
20 21 22
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> ( G ` S ) e. B ) |
24 |
1 6 7 8 9
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G ` S ) e. B ) -> ( I ` ( G ` S ) ) e. P ) |
25 |
16 23 24
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> ( I ` ( G ` S ) ) e. P ) |
26 |
1 5 6 8 7 9
|
dihglblem5 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> |^|_ x e. S ( I ` x ) e. P ) |
27 |
26
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> |^|_ x e. S ( I ` x ) e. P ) |
28 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) |
29 |
9 10 17 25 27 28
|
lpssat |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) -> E. p e. D ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) |
30 |
29
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) -> E. p e. D ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) ) |
31 |
|
simp1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
32 |
6 8 7 10
|
dih1dimat |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. D ) -> p e. ran I ) |
33 |
32
|
adantlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) -> p e. ran I ) |
34 |
33
|
3adant3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> p e. ran I ) |
35 |
6 7
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ran I ) -> ( I ` ( `' I ` p ) ) = p ) |
36 |
31 34 35
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> ( I ` ( `' I ` p ) ) = p ) |
37 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> p C_ |^|_ x e. S ( I ` x ) ) |
38 |
|
ssiin |
|- ( p C_ |^|_ x e. S ( I ` x ) <-> A. x e. S p C_ ( I ` x ) ) |
39 |
37 38
|
sylib |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> A. x e. S p C_ ( I ` x ) ) |
40 |
|
simplll |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) /\ x e. S ) -> ( K e. HL /\ W e. H ) ) |
41 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) -> ( K e. HL /\ W e. H ) ) |
42 |
1 6 7 8 9
|
dihf11 |
|- ( ( K e. HL /\ W e. H ) -> I : B -1-1-> P ) |
43 |
|
f1f1orn |
|- ( I : B -1-1-> P -> I : B -1-1-onto-> ran I ) |
44 |
41 42 43
|
3syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) -> I : B -1-1-onto-> ran I ) |
45 |
|
f1ocnvdm |
|- ( ( I : B -1-1-onto-> ran I /\ p e. ran I ) -> ( `' I ` p ) e. B ) |
46 |
44 33 45
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) -> ( `' I ` p ) e. B ) |
47 |
46
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) /\ x e. S ) -> ( `' I ` p ) e. B ) |
48 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) -> S C_ B ) |
49 |
48
|
sselda |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) /\ x e. S ) -> x e. B ) |
50 |
1 2 6 7
|
dihord |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` p ) e. B /\ x e. B ) -> ( ( I ` ( `' I ` p ) ) C_ ( I ` x ) <-> ( `' I ` p ) .<_ x ) ) |
51 |
40 47 49 50
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) /\ x e. S ) -> ( ( I ` ( `' I ` p ) ) C_ ( I ` x ) <-> ( `' I ` p ) .<_ x ) ) |
52 |
41 33 35
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) -> ( I ` ( `' I ` p ) ) = p ) |
53 |
52
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) /\ x e. S ) -> ( I ` ( `' I ` p ) ) = p ) |
54 |
53
|
sseq1d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) /\ x e. S ) -> ( ( I ` ( `' I ` p ) ) C_ ( I ` x ) <-> p C_ ( I ` x ) ) ) |
55 |
51 54
|
bitr3d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) /\ x e. S ) -> ( ( `' I ` p ) .<_ x <-> p C_ ( I ` x ) ) ) |
56 |
55
|
ralbidva |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D ) -> ( A. x e. S ( `' I ` p ) .<_ x <-> A. x e. S p C_ ( I ` x ) ) ) |
57 |
56
|
3adant3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> ( A. x e. S ( `' I ` p ) .<_ x <-> A. x e. S p C_ ( I ` x ) ) ) |
58 |
39 57
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> A. x e. S ( `' I ` p ) .<_ x ) |
59 |
|
simp1ll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> K e. HL ) |
60 |
59 19
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> K e. CLat ) |
61 |
46
|
3adant3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> ( `' I ` p ) e. B ) |
62 |
|
simp1rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> S C_ B ) |
63 |
1 2 5
|
clatleglb |
|- ( ( K e. CLat /\ ( `' I ` p ) e. B /\ S C_ B ) -> ( ( `' I ` p ) .<_ ( G ` S ) <-> A. x e. S ( `' I ` p ) .<_ x ) ) |
64 |
60 61 62 63
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> ( ( `' I ` p ) .<_ ( G ` S ) <-> A. x e. S ( `' I ` p ) .<_ x ) ) |
65 |
58 64
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> ( `' I ` p ) .<_ ( G ` S ) ) |
66 |
60 62 22
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> ( G ` S ) e. B ) |
67 |
1 2 6 7
|
dihord |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` p ) e. B /\ ( G ` S ) e. B ) -> ( ( I ` ( `' I ` p ) ) C_ ( I ` ( G ` S ) ) <-> ( `' I ` p ) .<_ ( G ` S ) ) ) |
68 |
31 61 66 67
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> ( ( I ` ( `' I ` p ) ) C_ ( I ` ( G ` S ) ) <-> ( `' I ` p ) .<_ ( G ` S ) ) ) |
69 |
65 68
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> ( I ` ( `' I ` p ) ) C_ ( I ` ( G ` S ) ) ) |
70 |
36 69
|
eqsstrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> p C_ ( I ` ( G ` S ) ) ) |
71 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> -. p C_ ( I ` ( G ` S ) ) ) |
72 |
70 71
|
pm2.21fal |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ p e. D /\ ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) ) -> F. ) |
73 |
72
|
rexlimdv3a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( E. p e. D ( p C_ |^|_ x e. S ( I ` x ) /\ -. p C_ ( I ` ( G ` S ) ) ) -> F. ) ) |
74 |
30 73
|
syld |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) -> F. ) ) |
75 |
15 74
|
mtoi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> -. ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) ) |
76 |
|
dfpss3 |
|- ( ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) <-> ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) /\ -. |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) ) |
77 |
76
|
notbii |
|- ( -. ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) <-> -. ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) /\ -. |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) ) |
78 |
|
iman |
|- ( ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) -> |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) <-> -. ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) /\ -. |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) ) |
79 |
|
anclb |
|- ( ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) -> |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) <-> ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) -> ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) /\ |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) ) ) |
80 |
77 78 79
|
3bitr2i |
|- ( -. ( I ` ( G ` S ) ) C. |^|_ x e. S ( I ` x ) <-> ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) -> ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) /\ |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) ) ) |
81 |
75 80
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) -> ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) /\ |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) ) ) |
82 |
14 81
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) /\ |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) ) |
83 |
|
eqss |
|- ( ( I ` ( G ` S ) ) = |^|_ x e. S ( I ` x ) <-> ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) /\ |^|_ x e. S ( I ` x ) C_ ( I ` ( G ` S ) ) ) ) |
84 |
82 83
|
sylibr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( I ` ( G ` S ) ) = |^|_ x e. S ( I ` x ) ) |