Step |
Hyp |
Ref |
Expression |
1 |
|
lpssat.s |
|- S = ( LSubSp ` W ) |
2 |
|
lpssat.a |
|- A = ( LSAtoms ` W ) |
3 |
|
lpssat.w |
|- ( ph -> W e. LMod ) |
4 |
|
lpssat.t |
|- ( ph -> T e. S ) |
5 |
|
lpssat.u |
|- ( ph -> U e. S ) |
6 |
|
lpssat.l |
|- ( ph -> T C. U ) |
7 |
|
dfpss3 |
|- ( T C. U <-> ( T C_ U /\ -. U C_ T ) ) |
8 |
7
|
simprbi |
|- ( T C. U -> -. U C_ T ) |
9 |
6 8
|
syl |
|- ( ph -> -. U C_ T ) |
10 |
|
iman |
|- ( ( q C_ U -> q C_ T ) <-> -. ( q C_ U /\ -. q C_ T ) ) |
11 |
10
|
ralbii |
|- ( A. q e. A ( q C_ U -> q C_ T ) <-> A. q e. A -. ( q C_ U /\ -. q C_ T ) ) |
12 |
|
ss2rab |
|- ( { q e. A | q C_ U } C_ { q e. A | q C_ T } <-> A. q e. A ( q C_ U -> q C_ T ) ) |
13 |
3
|
adantr |
|- ( ( ph /\ { q e. A | q C_ U } C_ { q e. A | q C_ T } ) -> W e. LMod ) |
14 |
1 2
|
lsatlss |
|- ( W e. LMod -> A C_ S ) |
15 |
|
rabss2 |
|- ( A C_ S -> { q e. A | q C_ T } C_ { q e. S | q C_ T } ) |
16 |
|
uniss |
|- ( { q e. A | q C_ T } C_ { q e. S | q C_ T } -> U. { q e. A | q C_ T } C_ U. { q e. S | q C_ T } ) |
17 |
3 14 15 16
|
4syl |
|- ( ph -> U. { q e. A | q C_ T } C_ U. { q e. S | q C_ T } ) |
18 |
|
unimax |
|- ( T e. S -> U. { q e. S | q C_ T } = T ) |
19 |
4 18
|
syl |
|- ( ph -> U. { q e. S | q C_ T } = T ) |
20 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
21 |
20 1
|
lssss |
|- ( T e. S -> T C_ ( Base ` W ) ) |
22 |
4 21
|
syl |
|- ( ph -> T C_ ( Base ` W ) ) |
23 |
19 22
|
eqsstrd |
|- ( ph -> U. { q e. S | q C_ T } C_ ( Base ` W ) ) |
24 |
17 23
|
sstrd |
|- ( ph -> U. { q e. A | q C_ T } C_ ( Base ` W ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ { q e. A | q C_ U } C_ { q e. A | q C_ T } ) -> U. { q e. A | q C_ T } C_ ( Base ` W ) ) |
26 |
|
uniss |
|- ( { q e. A | q C_ U } C_ { q e. A | q C_ T } -> U. { q e. A | q C_ U } C_ U. { q e. A | q C_ T } ) |
27 |
26
|
adantl |
|- ( ( ph /\ { q e. A | q C_ U } C_ { q e. A | q C_ T } ) -> U. { q e. A | q C_ U } C_ U. { q e. A | q C_ T } ) |
28 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
29 |
20 28
|
lspss |
|- ( ( W e. LMod /\ U. { q e. A | q C_ T } C_ ( Base ` W ) /\ U. { q e. A | q C_ U } C_ U. { q e. A | q C_ T } ) -> ( ( LSpan ` W ) ` U. { q e. A | q C_ U } ) C_ ( ( LSpan ` W ) ` U. { q e. A | q C_ T } ) ) |
30 |
13 25 27 29
|
syl3anc |
|- ( ( ph /\ { q e. A | q C_ U } C_ { q e. A | q C_ T } ) -> ( ( LSpan ` W ) ` U. { q e. A | q C_ U } ) C_ ( ( LSpan ` W ) ` U. { q e. A | q C_ T } ) ) |
31 |
1 28 2
|
lssats |
|- ( ( W e. LMod /\ U e. S ) -> U = ( ( LSpan ` W ) ` U. { q e. A | q C_ U } ) ) |
32 |
3 5 31
|
syl2anc |
|- ( ph -> U = ( ( LSpan ` W ) ` U. { q e. A | q C_ U } ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ { q e. A | q C_ U } C_ { q e. A | q C_ T } ) -> U = ( ( LSpan ` W ) ` U. { q e. A | q C_ U } ) ) |
34 |
1 28 2
|
lssats |
|- ( ( W e. LMod /\ T e. S ) -> T = ( ( LSpan ` W ) ` U. { q e. A | q C_ T } ) ) |
35 |
3 4 34
|
syl2anc |
|- ( ph -> T = ( ( LSpan ` W ) ` U. { q e. A | q C_ T } ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ { q e. A | q C_ U } C_ { q e. A | q C_ T } ) -> T = ( ( LSpan ` W ) ` U. { q e. A | q C_ T } ) ) |
37 |
30 33 36
|
3sstr4d |
|- ( ( ph /\ { q e. A | q C_ U } C_ { q e. A | q C_ T } ) -> U C_ T ) |
38 |
37
|
ex |
|- ( ph -> ( { q e. A | q C_ U } C_ { q e. A | q C_ T } -> U C_ T ) ) |
39 |
12 38
|
syl5bir |
|- ( ph -> ( A. q e. A ( q C_ U -> q C_ T ) -> U C_ T ) ) |
40 |
11 39
|
syl5bir |
|- ( ph -> ( A. q e. A -. ( q C_ U /\ -. q C_ T ) -> U C_ T ) ) |
41 |
9 40
|
mtod |
|- ( ph -> -. A. q e. A -. ( q C_ U /\ -. q C_ T ) ) |
42 |
|
dfrex2 |
|- ( E. q e. A ( q C_ U /\ -. q C_ T ) <-> -. A. q e. A -. ( q C_ U /\ -. q C_ T ) ) |
43 |
41 42
|
sylibr |
|- ( ph -> E. q e. A ( q C_ U /\ -. q C_ T ) ) |