Step |
Hyp |
Ref |
Expression |
1 |
|
lpssat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lpssat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
3 |
|
lpssat.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
4 |
|
lpssat.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
5 |
|
lpssat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
lpssat.l |
⊢ ( 𝜑 → 𝑇 ⊊ 𝑈 ) |
7 |
|
dfpss3 |
⊢ ( 𝑇 ⊊ 𝑈 ↔ ( 𝑇 ⊆ 𝑈 ∧ ¬ 𝑈 ⊆ 𝑇 ) ) |
8 |
7
|
simprbi |
⊢ ( 𝑇 ⊊ 𝑈 → ¬ 𝑈 ⊆ 𝑇 ) |
9 |
6 8
|
syl |
⊢ ( 𝜑 → ¬ 𝑈 ⊆ 𝑇 ) |
10 |
|
iman |
⊢ ( ( 𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇 ) ↔ ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |
11 |
10
|
ralbii |
⊢ ( ∀ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇 ) ↔ ∀ 𝑞 ∈ 𝐴 ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |
12 |
|
ss2rab |
⊢ ( { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ↔ ∀ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇 ) ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → 𝑊 ∈ LMod ) |
14 |
1 2
|
lsatlss |
⊢ ( 𝑊 ∈ LMod → 𝐴 ⊆ 𝑆 ) |
15 |
|
rabss2 |
⊢ ( 𝐴 ⊆ 𝑆 → { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } ) |
16 |
|
uniss |
⊢ ( { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } ) |
17 |
3 14 15 16
|
4syl |
⊢ ( 𝜑 → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } ) |
18 |
|
unimax |
⊢ ( 𝑇 ∈ 𝑆 → ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } = 𝑇 ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } = 𝑇 ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
21 |
20 1
|
lssss |
⊢ ( 𝑇 ∈ 𝑆 → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
23 |
19 22
|
eqsstrd |
⊢ ( 𝜑 → ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } ⊆ ( Base ‘ 𝑊 ) ) |
24 |
17 23
|
sstrd |
⊢ ( 𝜑 → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ( Base ‘ 𝑊 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ( Base ‘ 𝑊 ) ) |
26 |
|
uniss |
⊢ ( { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) |
28 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
29 |
20 28
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ( Base ‘ 𝑊 ) ∧ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
30 |
13 25 27 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
31 |
1 28 2
|
lssats |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ) |
32 |
3 5 31
|
syl2anc |
⊢ ( 𝜑 → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ) |
34 |
1 28 2
|
lssats |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ) → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
35 |
3 4 34
|
syl2anc |
⊢ ( 𝜑 → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
37 |
30 33 36
|
3sstr4d |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → 𝑈 ⊆ 𝑇 ) |
38 |
37
|
ex |
⊢ ( 𝜑 → ( { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } → 𝑈 ⊆ 𝑇 ) ) |
39 |
12 38
|
syl5bir |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇 ) → 𝑈 ⊆ 𝑇 ) ) |
40 |
11 39
|
syl5bir |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝐴 ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) → 𝑈 ⊆ 𝑇 ) ) |
41 |
9 40
|
mtod |
⊢ ( 𝜑 → ¬ ∀ 𝑞 ∈ 𝐴 ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |
42 |
|
dfrex2 |
⊢ ( ∃ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ↔ ¬ ∀ 𝑞 ∈ 𝐴 ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |
43 |
41 42
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |