| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpssat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lpssat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 3 |
|
lpssat.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 4 |
|
lpssat.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 5 |
|
lpssat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 6 |
|
lpssat.l |
⊢ ( 𝜑 → 𝑇 ⊊ 𝑈 ) |
| 7 |
|
dfpss3 |
⊢ ( 𝑇 ⊊ 𝑈 ↔ ( 𝑇 ⊆ 𝑈 ∧ ¬ 𝑈 ⊆ 𝑇 ) ) |
| 8 |
7
|
simprbi |
⊢ ( 𝑇 ⊊ 𝑈 → ¬ 𝑈 ⊆ 𝑇 ) |
| 9 |
6 8
|
syl |
⊢ ( 𝜑 → ¬ 𝑈 ⊆ 𝑇 ) |
| 10 |
|
iman |
⊢ ( ( 𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇 ) ↔ ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |
| 11 |
10
|
ralbii |
⊢ ( ∀ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇 ) ↔ ∀ 𝑞 ∈ 𝐴 ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |
| 12 |
|
ss2rab |
⊢ ( { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ↔ ∀ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇 ) ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → 𝑊 ∈ LMod ) |
| 14 |
1 2
|
lsatlss |
⊢ ( 𝑊 ∈ LMod → 𝐴 ⊆ 𝑆 ) |
| 15 |
|
rabss2 |
⊢ ( 𝐴 ⊆ 𝑆 → { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } ) |
| 16 |
|
uniss |
⊢ ( { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } ) |
| 17 |
3 14 15 16
|
4syl |
⊢ ( 𝜑 → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } ) |
| 18 |
|
unimax |
⊢ ( 𝑇 ∈ 𝑆 → ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } = 𝑇 ) |
| 19 |
4 18
|
syl |
⊢ ( 𝜑 → ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } = 𝑇 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 21 |
20 1
|
lssss |
⊢ ( 𝑇 ∈ 𝑆 → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 22 |
4 21
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 23 |
19 22
|
eqsstrd |
⊢ ( 𝜑 → ∪ { 𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇 } ⊆ ( Base ‘ 𝑊 ) ) |
| 24 |
17 23
|
sstrd |
⊢ ( 𝜑 → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ( Base ‘ 𝑊 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ( Base ‘ 𝑊 ) ) |
| 26 |
|
uniss |
⊢ ( { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) |
| 28 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 29 |
20 28
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ⊆ ( Base ‘ 𝑊 ) ∧ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
| 30 |
13 25 27 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
| 31 |
1 28 2
|
lssats |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ) |
| 32 |
3 5 31
|
syl2anc |
⊢ ( 𝜑 → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ) ) |
| 34 |
1 28 2
|
lssats |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ) → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
| 35 |
3 4 34
|
syl2anc |
⊢ ( 𝜑 → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) ) |
| 37 |
30 33 36
|
3sstr4d |
⊢ ( ( 𝜑 ∧ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } ) → 𝑈 ⊆ 𝑇 ) |
| 38 |
37
|
ex |
⊢ ( 𝜑 → ( { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈 } ⊆ { 𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇 } → 𝑈 ⊆ 𝑇 ) ) |
| 39 |
12 38
|
biimtrrid |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇 ) → 𝑈 ⊆ 𝑇 ) ) |
| 40 |
11 39
|
biimtrrid |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝐴 ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) → 𝑈 ⊆ 𝑇 ) ) |
| 41 |
9 40
|
mtod |
⊢ ( 𝜑 → ¬ ∀ 𝑞 ∈ 𝐴 ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |
| 42 |
|
dfrex2 |
⊢ ( ∃ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ↔ ¬ ∀ 𝑞 ∈ 𝐴 ¬ ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |
| 43 |
41 42
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |