Metamath Proof Explorer


Theorem lpssat

Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. ( chpssati analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lpssat.s 𝑆 = ( LSubSp ‘ 𝑊 )
lpssat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lpssat.w ( 𝜑𝑊 ∈ LMod )
lpssat.t ( 𝜑𝑇𝑆 )
lpssat.u ( 𝜑𝑈𝑆 )
lpssat.l ( 𝜑𝑇𝑈 )
Assertion lpssat ( 𝜑 → ∃ 𝑞𝐴 ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) )

Proof

Step Hyp Ref Expression
1 lpssat.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lpssat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
3 lpssat.w ( 𝜑𝑊 ∈ LMod )
4 lpssat.t ( 𝜑𝑇𝑆 )
5 lpssat.u ( 𝜑𝑈𝑆 )
6 lpssat.l ( 𝜑𝑇𝑈 )
7 dfpss3 ( 𝑇𝑈 ↔ ( 𝑇𝑈 ∧ ¬ 𝑈𝑇 ) )
8 7 simprbi ( 𝑇𝑈 → ¬ 𝑈𝑇 )
9 6 8 syl ( 𝜑 → ¬ 𝑈𝑇 )
10 iman ( ( 𝑞𝑈𝑞𝑇 ) ↔ ¬ ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) )
11 10 ralbii ( ∀ 𝑞𝐴 ( 𝑞𝑈𝑞𝑇 ) ↔ ∀ 𝑞𝐴 ¬ ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) )
12 ss2rab ( { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } ↔ ∀ 𝑞𝐴 ( 𝑞𝑈𝑞𝑇 ) )
13 3 adantr ( ( 𝜑 ∧ { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } ) → 𝑊 ∈ LMod )
14 1 2 lsatlss ( 𝑊 ∈ LMod → 𝐴𝑆 )
15 rabss2 ( 𝐴𝑆 → { 𝑞𝐴𝑞𝑇 } ⊆ { 𝑞𝑆𝑞𝑇 } )
16 uniss ( { 𝑞𝐴𝑞𝑇 } ⊆ { 𝑞𝑆𝑞𝑇 } → { 𝑞𝐴𝑞𝑇 } ⊆ { 𝑞𝑆𝑞𝑇 } )
17 3 14 15 16 4syl ( 𝜑 { 𝑞𝐴𝑞𝑇 } ⊆ { 𝑞𝑆𝑞𝑇 } )
18 unimax ( 𝑇𝑆 { 𝑞𝑆𝑞𝑇 } = 𝑇 )
19 4 18 syl ( 𝜑 { 𝑞𝑆𝑞𝑇 } = 𝑇 )
20 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
21 20 1 lssss ( 𝑇𝑆𝑇 ⊆ ( Base ‘ 𝑊 ) )
22 4 21 syl ( 𝜑𝑇 ⊆ ( Base ‘ 𝑊 ) )
23 19 22 eqsstrd ( 𝜑 { 𝑞𝑆𝑞𝑇 } ⊆ ( Base ‘ 𝑊 ) )
24 17 23 sstrd ( 𝜑 { 𝑞𝐴𝑞𝑇 } ⊆ ( Base ‘ 𝑊 ) )
25 24 adantr ( ( 𝜑 ∧ { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } ) → { 𝑞𝐴𝑞𝑇 } ⊆ ( Base ‘ 𝑊 ) )
26 uniss ( { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } → { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } )
27 26 adantl ( ( 𝜑 ∧ { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } ) → { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } )
28 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
29 20 28 lspss ( ( 𝑊 ∈ LMod ∧ { 𝑞𝐴𝑞𝑇 } ⊆ ( Base ‘ 𝑊 ) ∧ { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑈 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑇 } ) )
30 13 25 27 29 syl3anc ( ( 𝜑 ∧ { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑈 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑇 } ) )
31 1 28 2 lssats ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑈 } ) )
32 3 5 31 syl2anc ( 𝜑𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑈 } ) )
33 32 adantr ( ( 𝜑 ∧ { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑈 } ) )
34 1 28 2 lssats ( ( 𝑊 ∈ LMod ∧ 𝑇𝑆 ) → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑇 } ) )
35 3 4 34 syl2anc ( 𝜑𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑇 } ) )
36 35 adantr ( ( 𝜑 ∧ { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } ) → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞𝐴𝑞𝑇 } ) )
37 30 33 36 3sstr4d ( ( 𝜑 ∧ { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } ) → 𝑈𝑇 )
38 37 ex ( 𝜑 → ( { 𝑞𝐴𝑞𝑈 } ⊆ { 𝑞𝐴𝑞𝑇 } → 𝑈𝑇 ) )
39 12 38 syl5bir ( 𝜑 → ( ∀ 𝑞𝐴 ( 𝑞𝑈𝑞𝑇 ) → 𝑈𝑇 ) )
40 11 39 syl5bir ( 𝜑 → ( ∀ 𝑞𝐴 ¬ ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) → 𝑈𝑇 ) )
41 9 40 mtod ( 𝜑 → ¬ ∀ 𝑞𝐴 ¬ ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) )
42 dfrex2 ( ∃ 𝑞𝐴 ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) ↔ ¬ ∀ 𝑞𝐴 ¬ ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) )
43 41 42 sylibr ( 𝜑 → ∃ 𝑞𝐴 ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) )