| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lrelat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lrelat.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
lrelat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 4 |
|
lrelat.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lrelat.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 6 |
|
lrelat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
|
lrelat.l |
⊢ ( 𝜑 → 𝑇 ⊊ 𝑈 ) |
| 8 |
1 3 4 5 6 7
|
lpssat |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ) |
| 9 |
|
ancom |
⊢ ( ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ↔ ( ¬ 𝑞 ⊆ 𝑇 ∧ 𝑞 ⊆ 𝑈 ) ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑊 ∈ LMod ) |
| 11 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑇 ∈ 𝑆 ) |
| 14 |
12 13
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) |
| 16 |
1 3 10 15
|
lsatlssel |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝑆 ) |
| 17 |
12 16
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 18 |
2 14 17
|
lssnle |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ¬ 𝑞 ⊆ 𝑇 ↔ 𝑇 ⊊ ( 𝑇 ⊕ 𝑞 ) ) ) |
| 19 |
7
|
pssssd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑈 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑇 ⊆ 𝑈 ) |
| 21 |
20
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 ⊆ 𝑈 ↔ ( 𝑇 ⊆ 𝑈 ∧ 𝑞 ⊆ 𝑈 ) ) ) |
| 22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑈 ∈ 𝑆 ) |
| 23 |
12 22
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 24 |
2
|
lsmlub |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑞 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑇 ⊆ 𝑈 ∧ 𝑞 ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ 𝑞 ) ⊆ 𝑈 ) ) |
| 25 |
14 17 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ( 𝑇 ⊆ 𝑈 ∧ 𝑞 ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ 𝑞 ) ⊆ 𝑈 ) ) |
| 26 |
21 25
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 ⊆ 𝑈 ↔ ( 𝑇 ⊕ 𝑞 ) ⊆ 𝑈 ) ) |
| 27 |
18 26
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ( ¬ 𝑞 ⊆ 𝑇 ∧ 𝑞 ⊆ 𝑈 ) ↔ ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑞 ) ∧ ( 𝑇 ⊕ 𝑞 ) ⊆ 𝑈 ) ) ) |
| 28 |
9 27
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ↔ ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑞 ) ∧ ( 𝑇 ⊕ 𝑞 ) ⊆ 𝑈 ) ) ) |
| 29 |
28
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑞 ∈ 𝐴 ( 𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇 ) ↔ ∃ 𝑞 ∈ 𝐴 ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑞 ) ∧ ( 𝑇 ⊕ 𝑞 ) ⊆ 𝑈 ) ) ) |
| 30 |
8 29
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝐴 ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑞 ) ∧ ( 𝑇 ⊕ 𝑞 ) ⊆ 𝑈 ) ) |