Metamath Proof Explorer


Theorem lrelat

Description: Subspaces are relatively atomic. Remark 2 of Kalmbach p. 149. ( chrelati analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lrelat.s 𝑆 = ( LSubSp ‘ 𝑊 )
lrelat.p = ( LSSum ‘ 𝑊 )
lrelat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lrelat.w ( 𝜑𝑊 ∈ LMod )
lrelat.t ( 𝜑𝑇𝑆 )
lrelat.u ( 𝜑𝑈𝑆 )
lrelat.l ( 𝜑𝑇𝑈 )
Assertion lrelat ( 𝜑 → ∃ 𝑞𝐴 ( 𝑇 ⊊ ( 𝑇 𝑞 ) ∧ ( 𝑇 𝑞 ) ⊆ 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lrelat.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lrelat.p = ( LSSum ‘ 𝑊 )
3 lrelat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
4 lrelat.w ( 𝜑𝑊 ∈ LMod )
5 lrelat.t ( 𝜑𝑇𝑆 )
6 lrelat.u ( 𝜑𝑈𝑆 )
7 lrelat.l ( 𝜑𝑇𝑈 )
8 1 3 4 5 6 7 lpssat ( 𝜑 → ∃ 𝑞𝐴 ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) )
9 ancom ( ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) ↔ ( ¬ 𝑞𝑇𝑞𝑈 ) )
10 4 adantr ( ( 𝜑𝑞𝐴 ) → 𝑊 ∈ LMod )
11 1 lsssssubg ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
12 10 11 syl ( ( 𝜑𝑞𝐴 ) → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
13 5 adantr ( ( 𝜑𝑞𝐴 ) → 𝑇𝑆 )
14 12 13 sseldd ( ( 𝜑𝑞𝐴 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) )
15 simpr ( ( 𝜑𝑞𝐴 ) → 𝑞𝐴 )
16 1 3 10 15 lsatlssel ( ( 𝜑𝑞𝐴 ) → 𝑞𝑆 )
17 12 16 sseldd ( ( 𝜑𝑞𝐴 ) → 𝑞 ∈ ( SubGrp ‘ 𝑊 ) )
18 2 14 17 lssnle ( ( 𝜑𝑞𝐴 ) → ( ¬ 𝑞𝑇𝑇 ⊊ ( 𝑇 𝑞 ) ) )
19 7 pssssd ( 𝜑𝑇𝑈 )
20 19 adantr ( ( 𝜑𝑞𝐴 ) → 𝑇𝑈 )
21 20 biantrurd ( ( 𝜑𝑞𝐴 ) → ( 𝑞𝑈 ↔ ( 𝑇𝑈𝑞𝑈 ) ) )
22 6 adantr ( ( 𝜑𝑞𝐴 ) → 𝑈𝑆 )
23 12 22 sseldd ( ( 𝜑𝑞𝐴 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
24 2 lsmlub ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑞 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑇𝑈𝑞𝑈 ) ↔ ( 𝑇 𝑞 ) ⊆ 𝑈 ) )
25 14 17 23 24 syl3anc ( ( 𝜑𝑞𝐴 ) → ( ( 𝑇𝑈𝑞𝑈 ) ↔ ( 𝑇 𝑞 ) ⊆ 𝑈 ) )
26 21 25 bitrd ( ( 𝜑𝑞𝐴 ) → ( 𝑞𝑈 ↔ ( 𝑇 𝑞 ) ⊆ 𝑈 ) )
27 18 26 anbi12d ( ( 𝜑𝑞𝐴 ) → ( ( ¬ 𝑞𝑇𝑞𝑈 ) ↔ ( 𝑇 ⊊ ( 𝑇 𝑞 ) ∧ ( 𝑇 𝑞 ) ⊆ 𝑈 ) ) )
28 9 27 syl5bb ( ( 𝜑𝑞𝐴 ) → ( ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) ↔ ( 𝑇 ⊊ ( 𝑇 𝑞 ) ∧ ( 𝑇 𝑞 ) ⊆ 𝑈 ) ) )
29 28 rexbidva ( 𝜑 → ( ∃ 𝑞𝐴 ( 𝑞𝑈 ∧ ¬ 𝑞𝑇 ) ↔ ∃ 𝑞𝐴 ( 𝑇 ⊊ ( 𝑇 𝑞 ) ∧ ( 𝑇 𝑞 ) ⊆ 𝑈 ) ) )
30 8 29 mpbid ( 𝜑 → ∃ 𝑞𝐴 ( 𝑇 ⊊ ( 𝑇 𝑞 ) ∧ ( 𝑇 𝑞 ) ⊆ 𝑈 ) )