Step |
Hyp |
Ref |
Expression |
1 |
|
lssnle.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
2 |
|
lssnle.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
lssnle.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
1
|
lsmss2b |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑈 ⊆ 𝑇 ↔ ( 𝑇 ⊕ 𝑈 ) = 𝑇 ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ⊆ 𝑇 ↔ ( 𝑇 ⊕ 𝑈 ) = 𝑇 ) ) |
6 |
|
eqcom |
⊢ ( ( 𝑇 ⊕ 𝑈 ) = 𝑇 ↔ 𝑇 = ( 𝑇 ⊕ 𝑈 ) ) |
7 |
5 6
|
bitrdi |
⊢ ( 𝜑 → ( 𝑈 ⊆ 𝑇 ↔ 𝑇 = ( 𝑇 ⊕ 𝑈 ) ) ) |
8 |
7
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
9 |
1
|
lsmub1 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
10 |
2 3 9
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
11 |
|
df-pss |
⊢ ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
12 |
11
|
baib |
⊢ ( 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) → ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
14 |
8 13
|
bitr4d |
⊢ ( 𝜑 → ( ¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ) ) |