Step |
Hyp |
Ref |
Expression |
1 |
|
lsmmod.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
2 |
|
simpl1 |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
simpl2 |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
inss1 |
⊢ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑇 |
5 |
4
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑇 ∩ 𝑈 ) ⊆ 𝑇 ) |
6 |
1
|
lsmless2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑇 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
7 |
2 3 5 6
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → 𝑆 ⊆ 𝑈 ) |
9 |
|
inss2 |
⊢ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 |
10 |
9
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 ) |
11 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
13 |
12
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
14 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
15 |
2 11 13 14
|
4syl |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
16 |
|
simpl3 |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
|
mreincl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
18 |
15 3 16 17
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
1
|
lsmlub |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊆ 𝑈 ∧ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 ) ↔ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ 𝑈 ) ) |
20 |
2 18 16 19
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( ( 𝑆 ⊆ 𝑈 ∧ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 ) ↔ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ 𝑈 ) ) |
21 |
8 10 20
|
mpbi2and |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ 𝑈 ) |
22 |
7 21
|
ssind |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ) |
23 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ↔ ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
25 |
24 1
|
lsmelval |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) ↔ ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
26 |
2 3 25
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) ↔ ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
27 |
2
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
28 |
18
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
29 |
|
simprll |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑦 ∈ 𝑆 ) |
30 |
|
simprlr |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑧 ∈ 𝑇 ) |
31 |
27 11
|
syl |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝐺 ∈ Grp ) |
32 |
16
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
33 |
12
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
35 |
8
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑆 ⊆ 𝑈 ) |
36 |
35 29
|
sseldd |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
37 |
34 36
|
sseldd |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
38 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
39 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
40 |
12 24 38 39
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
41 |
31 37 40
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
42 |
41
|
oveq1d |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
43 |
39
|
subginvcl |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑈 ) |
44 |
32 36 43
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑈 ) |
45 |
34 44
|
sseldd |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
46 |
|
simpll2 |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
47 |
12
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
48 |
46 47
|
syl |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
49 |
48 30
|
sseldd |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
50 |
12 24
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
51 |
31 45 37 49 50
|
syl13anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
52 |
12 24 38
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
53 |
31 49 52
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
54 |
42 51 53
|
3eqtr3d |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑧 ) |
55 |
|
simprr |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) |
56 |
24
|
subgcl |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑈 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑈 ) |
57 |
32 44 55 56
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑈 ) |
58 |
54 57
|
eqeltrrd |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) |
59 |
30 58
|
elind |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑧 ∈ ( 𝑇 ∩ 𝑈 ) ) |
60 |
24 1
|
lsmelvali |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( 𝑇 ∩ 𝑈 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) |
61 |
27 28 29 59 60
|
syl22anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) |
62 |
61
|
expr |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) |
63 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∈ 𝑈 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) |
64 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) |
65 |
63 64
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ↔ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) ) |
66 |
62 65
|
syl5ibrcom |
⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) ) |
67 |
66
|
rexlimdvva |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) ) |
68 |
26 67
|
sylbid |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) ) |
69 |
68
|
impd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) |
70 |
23 69
|
syl5bi |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑥 ∈ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) |
71 |
70
|
ssrdv |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ⊆ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) |
72 |
22 71
|
eqssd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) = ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ) |