Step |
Hyp |
Ref |
Expression |
1 |
|
lsmmod.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
2 |
|
simpl3 |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
eqid |
⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) |
4 |
3
|
oppgsubg |
⊢ ( SubGrp ‘ 𝐺 ) = ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) |
5 |
2 4
|
eleqtrdi |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
6 4
|
eleqtrdi |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) |
8 |
|
simpl1 |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
9 |
8 4
|
eleqtrdi |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → 𝑈 ⊆ 𝑆 ) |
11 |
|
eqid |
⊢ ( LSSum ‘ ( oppg ‘ 𝐺 ) ) = ( LSSum ‘ ( oppg ‘ 𝐺 ) ) |
12 |
11
|
lsmmod |
⊢ ( ( ( 𝑈 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ∧ 𝑇 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ∧ 𝑆 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑇 ∩ 𝑆 ) ) = ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) ) |
13 |
5 7 9 10 12
|
syl31anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑇 ∩ 𝑆 ) ) = ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) ) |
14 |
13
|
eqcomd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑇 ∩ 𝑆 ) ) ) |
15 |
|
incom |
⊢ ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = ( 𝑆 ∩ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ) |
16 |
|
incom |
⊢ ( 𝑇 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑇 ) |
17 |
16
|
oveq2i |
⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑇 ∩ 𝑆 ) ) = ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑆 ∩ 𝑇 ) ) |
18 |
14 15 17
|
3eqtr3g |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑆 ∩ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ) = ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑆 ∩ 𝑇 ) ) ) |
19 |
3 1
|
oppglsm |
⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) |
20 |
19
|
ineq2i |
⊢ ( 𝑆 ∩ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ) = ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) |
21 |
3 1
|
oppglsm |
⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑆 ∩ 𝑇 ) ) = ( ( 𝑆 ∩ 𝑇 ) ⊕ 𝑈 ) |
22 |
18 20 21
|
3eqtr3g |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = ( ( 𝑆 ∩ 𝑇 ) ⊕ 𝑈 ) ) |