Step |
Hyp |
Ref |
Expression |
1 |
|
lsmmod.p |
|- .(+) = ( LSSum ` G ) |
2 |
|
simpl3 |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> U e. ( SubGrp ` G ) ) |
3 |
|
eqid |
|- ( oppG ` G ) = ( oppG ` G ) |
4 |
3
|
oppgsubg |
|- ( SubGrp ` G ) = ( SubGrp ` ( oppG ` G ) ) |
5 |
2 4
|
eleqtrdi |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> U e. ( SubGrp ` ( oppG ` G ) ) ) |
6 |
|
simpl2 |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> T e. ( SubGrp ` G ) ) |
7 |
6 4
|
eleqtrdi |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> T e. ( SubGrp ` ( oppG ` G ) ) ) |
8 |
|
simpl1 |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> S e. ( SubGrp ` G ) ) |
9 |
8 4
|
eleqtrdi |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> S e. ( SubGrp ` ( oppG ` G ) ) ) |
10 |
|
simpr |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> U C_ S ) |
11 |
|
eqid |
|- ( LSSum ` ( oppG ` G ) ) = ( LSSum ` ( oppG ` G ) ) |
12 |
11
|
lsmmod |
|- ( ( ( U e. ( SubGrp ` ( oppG ` G ) ) /\ T e. ( SubGrp ` ( oppG ` G ) ) /\ S e. ( SubGrp ` ( oppG ` G ) ) ) /\ U C_ S ) -> ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) = ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) ) |
13 |
5 7 9 10 12
|
syl31anc |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) = ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) ) |
14 |
13
|
eqcomd |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) ) |
15 |
|
incom |
|- ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( S i^i ( U ( LSSum ` ( oppG ` G ) ) T ) ) |
16 |
|
incom |
|- ( T i^i S ) = ( S i^i T ) |
17 |
16
|
oveq2i |
|- ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) = ( U ( LSSum ` ( oppG ` G ) ) ( S i^i T ) ) |
18 |
14 15 17
|
3eqtr3g |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( S i^i ( U ( LSSum ` ( oppG ` G ) ) T ) ) = ( U ( LSSum ` ( oppG ` G ) ) ( S i^i T ) ) ) |
19 |
3 1
|
oppglsm |
|- ( U ( LSSum ` ( oppG ` G ) ) T ) = ( T .(+) U ) |
20 |
19
|
ineq2i |
|- ( S i^i ( U ( LSSum ` ( oppG ` G ) ) T ) ) = ( S i^i ( T .(+) U ) ) |
21 |
3 1
|
oppglsm |
|- ( U ( LSSum ` ( oppG ` G ) ) ( S i^i T ) ) = ( ( S i^i T ) .(+) U ) |
22 |
18 20 21
|
3eqtr3g |
|- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( S i^i ( T .(+) U ) ) = ( ( S i^i T ) .(+) U ) ) |