| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppggic.o |
|- O = ( oppG ` G ) |
| 2 |
|
subgrcl |
|- ( x e. ( SubGrp ` G ) -> G e. Grp ) |
| 3 |
|
subgrcl |
|- ( x e. ( SubGrp ` O ) -> O e. Grp ) |
| 4 |
1
|
oppggrpb |
|- ( G e. Grp <-> O e. Grp ) |
| 5 |
3 4
|
sylibr |
|- ( x e. ( SubGrp ` O ) -> G e. Grp ) |
| 6 |
1
|
oppgsubm |
|- ( SubMnd ` G ) = ( SubMnd ` O ) |
| 7 |
6
|
eleq2i |
|- ( x e. ( SubMnd ` G ) <-> x e. ( SubMnd ` O ) ) |
| 8 |
7
|
a1i |
|- ( G e. Grp -> ( x e. ( SubMnd ` G ) <-> x e. ( SubMnd ` O ) ) ) |
| 9 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 10 |
1 9
|
oppginv |
|- ( G e. Grp -> ( invg ` G ) = ( invg ` O ) ) |
| 11 |
10
|
fveq1d |
|- ( G e. Grp -> ( ( invg ` G ) ` y ) = ( ( invg ` O ) ` y ) ) |
| 12 |
11
|
eleq1d |
|- ( G e. Grp -> ( ( ( invg ` G ) ` y ) e. x <-> ( ( invg ` O ) ` y ) e. x ) ) |
| 13 |
12
|
ralbidv |
|- ( G e. Grp -> ( A. y e. x ( ( invg ` G ) ` y ) e. x <-> A. y e. x ( ( invg ` O ) ` y ) e. x ) ) |
| 14 |
8 13
|
anbi12d |
|- ( G e. Grp -> ( ( x e. ( SubMnd ` G ) /\ A. y e. x ( ( invg ` G ) ` y ) e. x ) <-> ( x e. ( SubMnd ` O ) /\ A. y e. x ( ( invg ` O ) ` y ) e. x ) ) ) |
| 15 |
9
|
issubg3 |
|- ( G e. Grp -> ( x e. ( SubGrp ` G ) <-> ( x e. ( SubMnd ` G ) /\ A. y e. x ( ( invg ` G ) ` y ) e. x ) ) ) |
| 16 |
|
eqid |
|- ( invg ` O ) = ( invg ` O ) |
| 17 |
16
|
issubg3 |
|- ( O e. Grp -> ( x e. ( SubGrp ` O ) <-> ( x e. ( SubMnd ` O ) /\ A. y e. x ( ( invg ` O ) ` y ) e. x ) ) ) |
| 18 |
4 17
|
sylbi |
|- ( G e. Grp -> ( x e. ( SubGrp ` O ) <-> ( x e. ( SubMnd ` O ) /\ A. y e. x ( ( invg ` O ) ` y ) e. x ) ) ) |
| 19 |
14 15 18
|
3bitr4d |
|- ( G e. Grp -> ( x e. ( SubGrp ` G ) <-> x e. ( SubGrp ` O ) ) ) |
| 20 |
2 5 19
|
pm5.21nii |
|- ( x e. ( SubGrp ` G ) <-> x e. ( SubGrp ` O ) ) |
| 21 |
20
|
eqriv |
|- ( SubGrp ` G ) = ( SubGrp ` O ) |