Metamath Proof Explorer


Theorem oppgsubg

Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis oppggic.o 𝑂 = ( oppg𝐺 )
Assertion oppgsubg ( SubGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝑂 )

Proof

Step Hyp Ref Expression
1 oppggic.o 𝑂 = ( oppg𝐺 )
2 subgrcl ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
3 subgrcl ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) → 𝑂 ∈ Grp )
4 1 oppggrpb ( 𝐺 ∈ Grp ↔ 𝑂 ∈ Grp )
5 3 4 sylibr ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) → 𝐺 ∈ Grp )
6 1 oppgsubm ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 )
7 6 eleq2i ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) )
8 7 a1i ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) )
9 eqid ( invg𝐺 ) = ( invg𝐺 )
10 1 9 oppginv ( 𝐺 ∈ Grp → ( invg𝐺 ) = ( invg𝑂 ) )
11 10 fveq1d ( 𝐺 ∈ Grp → ( ( invg𝐺 ) ‘ 𝑦 ) = ( ( invg𝑂 ) ‘ 𝑦 ) )
12 11 eleq1d ( 𝐺 ∈ Grp → ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ↔ ( ( invg𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) )
13 12 ralbidv ( 𝐺 ∈ Grp → ( ∀ 𝑦𝑥 ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦𝑥 ( ( invg𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) )
14 8 13 anbi12d ( 𝐺 ∈ Grp → ( ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑦𝑥 ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ∧ ∀ 𝑦𝑥 ( ( invg𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) )
15 9 issubg3 ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑦𝑥 ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ) ) )
16 eqid ( invg𝑂 ) = ( invg𝑂 )
17 16 issubg3 ( 𝑂 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ∧ ∀ 𝑦𝑥 ( ( invg𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) )
18 4 17 sylbi ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ∧ ∀ 𝑦𝑥 ( ( invg𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) )
19 14 15 18 3bitr4d ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) )
20 2 5 19 pm5.21nii ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) )
21 20 eqriv ( SubGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝑂 )