| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppggic.o |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
| 2 |
|
oppgcntz.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 3 |
|
eqcom |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
| 6 |
4 1 5
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) |
| 7 |
4 1 5
|
oppgplus |
⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) |
| 8 |
6 7
|
eqeq12i |
⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 9 |
3 8
|
bitr4i |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) |
| 10 |
9
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) |
| 11 |
10
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) |
| 12 |
11
|
anbi2i |
⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 14 |
13 2
|
cntzrcl |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) → ( 𝐺 ∈ V ∧ 𝐴 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 15 |
14
|
simprd |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 |
13 4 2
|
elcntz |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 17 |
15 16
|
biadanii |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 18 |
1 13
|
oppgbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
| 19 |
|
eqid |
⊢ ( Cntz ‘ 𝑂 ) = ( Cntz ‘ 𝑂 ) |
| 20 |
18 19
|
cntzrcl |
⊢ ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) → ( 𝑂 ∈ V ∧ 𝐴 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 21 |
20
|
simprd |
⊢ ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 22 |
18 5 19
|
elcntz |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) ) |
| 23 |
21 22
|
biadanii |
⊢ ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) ) |
| 24 |
12 17 23
|
3bitr4i |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) ↔ 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) ) |
| 25 |
24
|
eqriv |
⊢ ( 𝑍 ‘ 𝐴 ) = ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) |