| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppggic.o |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
| 2 |
|
oppgcntr.z |
⊢ 𝑍 = ( Cntr ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
| 4 |
1 3
|
oppgcntz |
⊢ ( ( Cntz ‘ 𝐺 ) ‘ ( Base ‘ 𝐺 ) ) = ( ( Cntz ‘ 𝑂 ) ‘ ( Base ‘ 𝐺 ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 6 |
5 3
|
cntrval |
⊢ ( ( Cntz ‘ 𝐺 ) ‘ ( Base ‘ 𝐺 ) ) = ( Cntr ‘ 𝐺 ) |
| 7 |
6 2
|
eqtr4i |
⊢ ( ( Cntz ‘ 𝐺 ) ‘ ( Base ‘ 𝐺 ) ) = 𝑍 |
| 8 |
1 5
|
oppgbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
| 9 |
|
eqid |
⊢ ( Cntz ‘ 𝑂 ) = ( Cntz ‘ 𝑂 ) |
| 10 |
8 9
|
cntrval |
⊢ ( ( Cntz ‘ 𝑂 ) ‘ ( Base ‘ 𝐺 ) ) = ( Cntr ‘ 𝑂 ) |
| 11 |
4 7 10
|
3eqtr3i |
⊢ 𝑍 = ( Cntr ‘ 𝑂 ) |