Metamath Proof Explorer


Theorem lsmmod2

Description: Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 8-Jan-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypothesis lsmmod.p ˙ = LSSum G
Assertion lsmmod2 S SubGrp G T SubGrp G U SubGrp G U S S T ˙ U = S T ˙ U

Proof

Step Hyp Ref Expression
1 lsmmod.p ˙ = LSSum G
2 simpl3 S SubGrp G T SubGrp G U SubGrp G U S U SubGrp G
3 eqid opp 𝑔 G = opp 𝑔 G
4 3 oppgsubg SubGrp G = SubGrp opp 𝑔 G
5 2 4 eleqtrdi S SubGrp G T SubGrp G U SubGrp G U S U SubGrp opp 𝑔 G
6 simpl2 S SubGrp G T SubGrp G U SubGrp G U S T SubGrp G
7 6 4 eleqtrdi S SubGrp G T SubGrp G U SubGrp G U S T SubGrp opp 𝑔 G
8 simpl1 S SubGrp G T SubGrp G U SubGrp G U S S SubGrp G
9 8 4 eleqtrdi S SubGrp G T SubGrp G U SubGrp G U S S SubGrp opp 𝑔 G
10 simpr S SubGrp G T SubGrp G U SubGrp G U S U S
11 eqid LSSum opp 𝑔 G = LSSum opp 𝑔 G
12 11 lsmmod U SubGrp opp 𝑔 G T SubGrp opp 𝑔 G S SubGrp opp 𝑔 G U S U LSSum opp 𝑔 G T S = U LSSum opp 𝑔 G T S
13 5 7 9 10 12 syl31anc S SubGrp G T SubGrp G U SubGrp G U S U LSSum opp 𝑔 G T S = U LSSum opp 𝑔 G T S
14 13 eqcomd S SubGrp G T SubGrp G U SubGrp G U S U LSSum opp 𝑔 G T S = U LSSum opp 𝑔 G T S
15 incom U LSSum opp 𝑔 G T S = S U LSSum opp 𝑔 G T
16 incom T S = S T
17 16 oveq2i U LSSum opp 𝑔 G T S = U LSSum opp 𝑔 G S T
18 14 15 17 3eqtr3g S SubGrp G T SubGrp G U SubGrp G U S S U LSSum opp 𝑔 G T = U LSSum opp 𝑔 G S T
19 3 1 oppglsm U LSSum opp 𝑔 G T = T ˙ U
20 19 ineq2i S U LSSum opp 𝑔 G T = S T ˙ U
21 3 1 oppglsm U LSSum opp 𝑔 G S T = S T ˙ U
22 18 20 21 3eqtr3g S SubGrp G T SubGrp G U SubGrp G U S S T ˙ U = S T ˙ U