Metamath Proof Explorer


Theorem lsmmod

Description: The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmmod.p ˙=LSSumG
Assertion lsmmod SSubGrpGTSubGrpGUSubGrpGSUS˙TU=S˙TU

Proof

Step Hyp Ref Expression
1 lsmmod.p ˙=LSSumG
2 simpl1 SSubGrpGTSubGrpGUSubGrpGSUSSubGrpG
3 simpl2 SSubGrpGTSubGrpGUSubGrpGSUTSubGrpG
4 inss1 TUT
5 4 a1i SSubGrpGTSubGrpGUSubGrpGSUTUT
6 1 lsmless2 SSubGrpGTSubGrpGTUTS˙TUS˙T
7 2 3 5 6 syl3anc SSubGrpGTSubGrpGUSubGrpGSUS˙TUS˙T
8 simpr SSubGrpGTSubGrpGUSubGrpGSUSU
9 inss2 TUU
10 9 a1i SSubGrpGTSubGrpGUSubGrpGSUTUU
11 subgrcl SSubGrpGGGrp
12 eqid BaseG=BaseG
13 12 subgacs GGrpSubGrpGACSBaseG
14 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
15 2 11 13 14 4syl SSubGrpGTSubGrpGUSubGrpGSUSubGrpGMooreBaseG
16 simpl3 SSubGrpGTSubGrpGUSubGrpGSUUSubGrpG
17 mreincl SubGrpGMooreBaseGTSubGrpGUSubGrpGTUSubGrpG
18 15 3 16 17 syl3anc SSubGrpGTSubGrpGUSubGrpGSUTUSubGrpG
19 1 lsmlub SSubGrpGTUSubGrpGUSubGrpGSUTUUS˙TUU
20 2 18 16 19 syl3anc SSubGrpGTSubGrpGUSubGrpGSUSUTUUS˙TUU
21 8 10 20 mpbi2and SSubGrpGTSubGrpGUSubGrpGSUS˙TUU
22 7 21 ssind SSubGrpGTSubGrpGUSubGrpGSUS˙TUS˙TU
23 elin xS˙TUxS˙TxU
24 eqid +G=+G
25 24 1 lsmelval SSubGrpGTSubGrpGxS˙TySzTx=y+Gz
26 2 3 25 syl2anc SSubGrpGTSubGrpGUSubGrpGSUxS˙TySzTx=y+Gz
27 2 adantr SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUSSubGrpG
28 18 adantr SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUTUSubGrpG
29 simprll SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUyS
30 simprlr SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUzT
31 27 11 syl SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUGGrp
32 16 adantr SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUUSubGrpG
33 12 subgss USubGrpGUBaseG
34 32 33 syl SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUUBaseG
35 8 adantr SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUSU
36 35 29 sseldd SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUyU
37 34 36 sseldd SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUyBaseG
38 eqid 0G=0G
39 eqid invgG=invgG
40 12 24 38 39 grplinv GGrpyBaseGinvgGy+Gy=0G
41 31 37 40 syl2anc SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUinvgGy+Gy=0G
42 41 oveq1d SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUinvgGy+Gy+Gz=0G+Gz
43 39 subginvcl USubGrpGyUinvgGyU
44 32 36 43 syl2anc SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUinvgGyU
45 34 44 sseldd SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUinvgGyBaseG
46 simpll2 SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUTSubGrpG
47 12 subgss TSubGrpGTBaseG
48 46 47 syl SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUTBaseG
49 48 30 sseldd SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUzBaseG
50 12 24 grpass GGrpinvgGyBaseGyBaseGzBaseGinvgGy+Gy+Gz=invgGy+Gy+Gz
51 31 45 37 49 50 syl13anc SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUinvgGy+Gy+Gz=invgGy+Gy+Gz
52 12 24 38 grplid GGrpzBaseG0G+Gz=z
53 31 49 52 syl2anc SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzU0G+Gz=z
54 42 51 53 3eqtr3d SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUinvgGy+Gy+Gz=z
55 simprr SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUy+GzU
56 24 subgcl USubGrpGinvgGyUy+GzUinvgGy+Gy+GzU
57 32 44 55 56 syl3anc SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUinvgGy+Gy+GzU
58 54 57 eqeltrrd SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUzU
59 30 58 elind SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUzTU
60 24 1 lsmelvali SSubGrpGTUSubGrpGySzTUy+GzS˙TU
61 27 28 29 59 60 syl22anc SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUy+GzS˙TU
62 61 expr SSubGrpGTSubGrpGUSubGrpGSUySzTy+GzUy+GzS˙TU
63 eleq1 x=y+GzxUy+GzU
64 eleq1 x=y+GzxS˙TUy+GzS˙TU
65 63 64 imbi12d x=y+GzxUxS˙TUy+GzUy+GzS˙TU
66 62 65 syl5ibrcom SSubGrpGTSubGrpGUSubGrpGSUySzTx=y+GzxUxS˙TU
67 66 rexlimdvva SSubGrpGTSubGrpGUSubGrpGSUySzTx=y+GzxUxS˙TU
68 26 67 sylbid SSubGrpGTSubGrpGUSubGrpGSUxS˙TxUxS˙TU
69 68 impd SSubGrpGTSubGrpGUSubGrpGSUxS˙TxUxS˙TU
70 23 69 biimtrid SSubGrpGTSubGrpGUSubGrpGSUxS˙TUxS˙TU
71 70 ssrdv SSubGrpGTSubGrpGUSubGrpGSUS˙TUS˙TU
72 22 71 eqssd SSubGrpGTSubGrpGUSubGrpGSUS˙TU=S˙TU