| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmmod.p |
|
| 2 |
|
simpl1 |
|
| 3 |
|
simpl2 |
|
| 4 |
|
inss1 |
|
| 5 |
4
|
a1i |
|
| 6 |
1
|
lsmless2 |
|
| 7 |
2 3 5 6
|
syl3anc |
|
| 8 |
|
simpr |
|
| 9 |
|
inss2 |
|
| 10 |
9
|
a1i |
|
| 11 |
|
subgrcl |
|
| 12 |
|
eqid |
|
| 13 |
12
|
subgacs |
|
| 14 |
|
acsmre |
|
| 15 |
2 11 13 14
|
4syl |
|
| 16 |
|
simpl3 |
|
| 17 |
|
mreincl |
|
| 18 |
15 3 16 17
|
syl3anc |
|
| 19 |
1
|
lsmlub |
|
| 20 |
2 18 16 19
|
syl3anc |
|
| 21 |
8 10 20
|
mpbi2and |
|
| 22 |
7 21
|
ssind |
|
| 23 |
|
elin |
|
| 24 |
|
eqid |
|
| 25 |
24 1
|
lsmelval |
|
| 26 |
2 3 25
|
syl2anc |
|
| 27 |
2
|
adantr |
|
| 28 |
18
|
adantr |
|
| 29 |
|
simprll |
|
| 30 |
|
simprlr |
|
| 31 |
27 11
|
syl |
|
| 32 |
16
|
adantr |
|
| 33 |
12
|
subgss |
|
| 34 |
32 33
|
syl |
|
| 35 |
8
|
adantr |
|
| 36 |
35 29
|
sseldd |
|
| 37 |
34 36
|
sseldd |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
12 24 38 39
|
grplinv |
|
| 41 |
31 37 40
|
syl2anc |
|
| 42 |
41
|
oveq1d |
|
| 43 |
39
|
subginvcl |
|
| 44 |
32 36 43
|
syl2anc |
|
| 45 |
34 44
|
sseldd |
|
| 46 |
|
simpll2 |
|
| 47 |
12
|
subgss |
|
| 48 |
46 47
|
syl |
|
| 49 |
48 30
|
sseldd |
|
| 50 |
12 24
|
grpass |
|
| 51 |
31 45 37 49 50
|
syl13anc |
|
| 52 |
12 24 38
|
grplid |
|
| 53 |
31 49 52
|
syl2anc |
|
| 54 |
42 51 53
|
3eqtr3d |
|
| 55 |
|
simprr |
|
| 56 |
24
|
subgcl |
|
| 57 |
32 44 55 56
|
syl3anc |
|
| 58 |
54 57
|
eqeltrrd |
|
| 59 |
30 58
|
elind |
|
| 60 |
24 1
|
lsmelvali |
|
| 61 |
27 28 29 59 60
|
syl22anc |
|
| 62 |
61
|
expr |
|
| 63 |
|
eleq1 |
|
| 64 |
|
eleq1 |
|
| 65 |
63 64
|
imbi12d |
|
| 66 |
62 65
|
syl5ibrcom |
|
| 67 |
66
|
rexlimdvva |
|
| 68 |
26 67
|
sylbid |
|
| 69 |
68
|
impd |
|
| 70 |
23 69
|
biimtrid |
|
| 71 |
70
|
ssrdv |
|
| 72 |
22 71
|
eqssd |
|