Step |
Hyp |
Ref |
Expression |
1 |
|
lsmpropd.b1 |
|
2 |
|
lsmpropd.b2 |
|
3 |
|
lsmpropd.p |
|
4 |
|
lsmpropd.v1 |
|
5 |
|
lsmpropd.v2 |
|
6 |
|
simp11 |
|
7 |
|
simp12 |
|
8 |
7
|
elpwid |
|
9 |
|
simp2 |
|
10 |
8 9
|
sseldd |
|
11 |
|
simp13 |
|
12 |
11
|
elpwid |
|
13 |
|
simp3 |
|
14 |
12 13
|
sseldd |
|
15 |
6 10 14 3
|
syl12anc |
|
16 |
15
|
mpoeq3dva |
|
17 |
16
|
rneqd |
|
18 |
17
|
mpoeq3dva |
|
19 |
1
|
pweqd |
|
20 |
|
mpoeq12 |
|
21 |
19 19 20
|
syl2anc |
|
22 |
2
|
pweqd |
|
23 |
|
mpoeq12 |
|
24 |
22 22 23
|
syl2anc |
|
25 |
18 21 24
|
3eqtr3d |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
26 27 28
|
lsmfval |
|
30 |
4 29
|
syl |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
31 32 33
|
lsmfval |
|
35 |
5 34
|
syl |
|
36 |
25 30 35
|
3eqtr4d |
|