Metamath Proof Explorer


Theorem cntzrecd

Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cntzrecd.z Z=CntzG
cntzrecd.t φTSubGrpG
cntzrecd.u φUSubGrpG
cntzrecd.s φTZU
Assertion cntzrecd φUZT

Proof

Step Hyp Ref Expression
1 cntzrecd.z Z=CntzG
2 cntzrecd.t φTSubGrpG
3 cntzrecd.u φUSubGrpG
4 cntzrecd.s φTZU
5 eqid BaseG=BaseG
6 5 subgss TSubGrpGTBaseG
7 5 subgss USubGrpGUBaseG
8 5 1 cntzrec TBaseGUBaseGTZUUZT
9 6 7 8 syl2an TSubGrpGUSubGrpGTZUUZT
10 2 3 9 syl2anc φTZUUZT
11 4 10 mpbid φUZT