Step |
Hyp |
Ref |
Expression |
1 |
|
lsmpropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
lsmpropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
lsmpropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
4 |
|
lsmpropd.v1 |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
5 |
|
lsmpropd.v2 |
⊢ ( 𝜑 → 𝐿 ∈ 𝑊 ) |
6 |
|
simp11 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝜑 ) |
7 |
|
simp12 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑡 ∈ 𝒫 𝐵 ) |
8 |
7
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑡 ⊆ 𝐵 ) |
9 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑥 ∈ 𝑡 ) |
10 |
8 9
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑥 ∈ 𝐵 ) |
11 |
|
simp13 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑢 ∈ 𝒫 𝐵 ) |
12 |
11
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑢 ⊆ 𝐵 ) |
13 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝑢 ) |
14 |
12 13
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝐵 ) |
15 |
6 10 14 3
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
16 |
15
|
mpoeq3dva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
17 |
16
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
18 |
17
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
19 |
1
|
pweqd |
⊢ ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ) |
20 |
|
mpoeq12 |
⊢ ( ( 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ∧ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ) → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
21 |
19 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
22 |
2
|
pweqd |
⊢ ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ) |
23 |
|
mpoeq12 |
⊢ ( ( 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ∧ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ) → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
24 |
22 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
25 |
18 21 24
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
27 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
28 |
|
eqid |
⊢ ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐾 ) |
29 |
26 27 28
|
lsmfval |
⊢ ( 𝐾 ∈ 𝑉 → ( LSSum ‘ 𝐾 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
30 |
4 29
|
syl |
⊢ ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
32 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
33 |
|
eqid |
⊢ ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝐿 ) |
34 |
31 32 33
|
lsmfval |
⊢ ( 𝐿 ∈ 𝑊 → ( LSSum ‘ 𝐿 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
35 |
5 34
|
syl |
⊢ ( 𝜑 → ( LSSum ‘ 𝐿 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
36 |
25 30 35
|
3eqtr4d |
⊢ ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐿 ) ) |