Metamath Proof Explorer


Theorem lsmpropd

Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015) (Revised by AV, 25-Apr-2024)

Ref Expression
Hypotheses lsmpropd.b1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
lsmpropd.b2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
lsmpropd.p ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
lsmpropd.v1 ( 𝜑𝐾𝑉 )
lsmpropd.v2 ( 𝜑𝐿𝑊 )
Assertion lsmpropd ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐿 ) )

Proof

Step Hyp Ref Expression
1 lsmpropd.b1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 lsmpropd.b2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 lsmpropd.p ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
4 lsmpropd.v1 ( 𝜑𝐾𝑉 )
5 lsmpropd.v2 ( 𝜑𝐿𝑊 )
6 simp11 ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → 𝜑 )
7 simp12 ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → 𝑡 ∈ 𝒫 𝐵 )
8 7 elpwid ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → 𝑡𝐵 )
9 simp2 ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → 𝑥𝑡 )
10 8 9 sseldd ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → 𝑥𝐵 )
11 simp13 ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → 𝑢 ∈ 𝒫 𝐵 )
12 11 elpwid ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → 𝑢𝐵 )
13 simp3 ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → 𝑦𝑢 )
14 12 13 sseldd ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → 𝑦𝐵 )
15 6 10 14 3 syl12anc ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑡𝑦𝑢 ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
16 15 mpoeq3dva ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) → ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) = ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) )
17 16 rneqd ( ( 𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵 ) → ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) = ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) )
18 17 mpoeq3dva ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) ) )
19 1 pweqd ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) )
20 mpoeq12 ( ( 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ∧ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ) → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) ) )
21 19 19 20 syl2anc ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) ) )
22 2 pweqd ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) )
23 mpoeq12 ( ( 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ∧ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ) → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) ) )
24 22 22 23 syl2anc ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) ) )
25 18 21 24 3eqtr3d ( 𝜑 → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) ) )
26 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
27 eqid ( +g𝐾 ) = ( +g𝐾 )
28 eqid ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐾 )
29 26 27 28 lsmfval ( 𝐾𝑉 → ( LSSum ‘ 𝐾 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) ) )
30 4 29 syl ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐾 ) 𝑦 ) ) ) )
31 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
32 eqid ( +g𝐿 ) = ( +g𝐿 )
33 eqid ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝐿 )
34 31 32 33 lsmfval ( 𝐿𝑊 → ( LSSum ‘ 𝐿 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) ) )
35 5 34 syl ( 𝜑 → ( LSSum ‘ 𝐿 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝐿 ) 𝑦 ) ) ) )
36 25 30 35 3eqtr4d ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐿 ) )