| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmpropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
lsmpropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
lsmpropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
|
lsmpropd.v1 |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
| 5 |
|
lsmpropd.v2 |
⊢ ( 𝜑 → 𝐿 ∈ 𝑊 ) |
| 6 |
|
simp11 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝜑 ) |
| 7 |
|
simp12 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 8 |
7
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑡 ⊆ 𝐵 ) |
| 9 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑥 ∈ 𝑡 ) |
| 10 |
8 9
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑥 ∈ 𝐵 ) |
| 11 |
|
simp13 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑢 ∈ 𝒫 𝐵 ) |
| 12 |
11
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑢 ⊆ 𝐵 ) |
| 13 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝑢 ) |
| 14 |
12 13
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝐵 ) |
| 15 |
6 10 14 3
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 16 |
15
|
mpoeq3dva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
| 17 |
16
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
| 18 |
17
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 19 |
1
|
pweqd |
⊢ ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ) |
| 20 |
|
mpoeq12 |
⊢ ( ( 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ∧ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ) → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
| 21 |
19 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
| 22 |
2
|
pweqd |
⊢ ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ) |
| 23 |
|
mpoeq12 |
⊢ ( ( 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ∧ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ) → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 24 |
22 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 25 |
18 21 24
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 27 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 28 |
|
eqid |
⊢ ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐾 ) |
| 29 |
26 27 28
|
lsmfval |
⊢ ( 𝐾 ∈ 𝑉 → ( LSSum ‘ 𝐾 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
| 30 |
4 29
|
syl |
⊢ ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 32 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
| 33 |
|
eqid |
⊢ ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝐿 ) |
| 34 |
31 32 33
|
lsmfval |
⊢ ( 𝐿 ∈ 𝑊 → ( LSSum ‘ 𝐿 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 35 |
5 34
|
syl |
⊢ ( 𝜑 → ( LSSum ‘ 𝐿 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 36 |
25 30 35
|
3eqtr4d |
⊢ ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐿 ) ) |