Step |
Hyp |
Ref |
Expression |
1 |
|
lsmpropd.b1 |
|- ( ph -> B = ( Base ` K ) ) |
2 |
|
lsmpropd.b2 |
|- ( ph -> B = ( Base ` L ) ) |
3 |
|
lsmpropd.p |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
4 |
|
lsmpropd.v1 |
|- ( ph -> K e. V ) |
5 |
|
lsmpropd.v2 |
|- ( ph -> L e. W ) |
6 |
|
simp11 |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> ph ) |
7 |
|
simp12 |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> t e. ~P B ) |
8 |
7
|
elpwid |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> t C_ B ) |
9 |
|
simp2 |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> x e. t ) |
10 |
8 9
|
sseldd |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> x e. B ) |
11 |
|
simp13 |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> u e. ~P B ) |
12 |
11
|
elpwid |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> u C_ B ) |
13 |
|
simp3 |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> y e. u ) |
14 |
12 13
|
sseldd |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> y e. B ) |
15 |
6 10 14 3
|
syl12anc |
|- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
16 |
15
|
mpoeq3dva |
|- ( ( ph /\ t e. ~P B /\ u e. ~P B ) -> ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) = ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) |
17 |
16
|
rneqd |
|- ( ( ph /\ t e. ~P B /\ u e. ~P B ) -> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) = ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) |
18 |
17
|
mpoeq3dva |
|- ( ph -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
19 |
1
|
pweqd |
|- ( ph -> ~P B = ~P ( Base ` K ) ) |
20 |
|
mpoeq12 |
|- ( ( ~P B = ~P ( Base ` K ) /\ ~P B = ~P ( Base ` K ) ) -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) = ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) ) |
21 |
19 19 20
|
syl2anc |
|- ( ph -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) = ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) ) |
22 |
2
|
pweqd |
|- ( ph -> ~P B = ~P ( Base ` L ) ) |
23 |
|
mpoeq12 |
|- ( ( ~P B = ~P ( Base ` L ) /\ ~P B = ~P ( Base ` L ) ) -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
24 |
22 22 23
|
syl2anc |
|- ( ph -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
25 |
18 21 24
|
3eqtr3d |
|- ( ph -> ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
26 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
27 |
|
eqid |
|- ( +g ` K ) = ( +g ` K ) |
28 |
|
eqid |
|- ( LSSum ` K ) = ( LSSum ` K ) |
29 |
26 27 28
|
lsmfval |
|- ( K e. V -> ( LSSum ` K ) = ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) ) |
30 |
4 29
|
syl |
|- ( ph -> ( LSSum ` K ) = ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) ) |
31 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
32 |
|
eqid |
|- ( +g ` L ) = ( +g ` L ) |
33 |
|
eqid |
|- ( LSSum ` L ) = ( LSSum ` L ) |
34 |
31 32 33
|
lsmfval |
|- ( L e. W -> ( LSSum ` L ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
35 |
5 34
|
syl |
|- ( ph -> ( LSSum ` L ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
36 |
25 30 35
|
3eqtr4d |
|- ( ph -> ( LSSum ` K ) = ( LSSum ` L ) ) |