Metamath Proof Explorer


Theorem simp13

Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011)

Ref Expression
Assertion simp13
|- ( ( ( ph /\ ps /\ ch ) /\ th /\ ta ) -> ch )

Proof

Step Hyp Ref Expression
1 simp3
 |-  ( ( ph /\ ps /\ ch ) -> ch )
2 1 3ad2ant1
 |-  ( ( ( ph /\ ps /\ ch ) /\ th /\ ta ) -> ch )