Metamath Proof Explorer


Theorem oppglsm

Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses oppglsm.o 𝑂 = ( oppg𝐺 )
oppglsm.p = ( LSSum ‘ 𝐺 )
Assertion oppglsm ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 𝑇 )

Proof

Step Hyp Ref Expression
1 oppglsm.o 𝑂 = ( oppg𝐺 )
2 oppglsm.p = ( LSSum ‘ 𝐺 )
3 1 fvexi 𝑂 ∈ V
4 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
5 1 4 oppgbas ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 )
6 eqid ( +g𝑂 ) = ( +g𝑂 )
7 eqid ( LSSum ‘ 𝑂 ) = ( LSSum ‘ 𝑂 )
8 5 6 7 lsmfval ( 𝑂 ∈ V → ( LSSum ‘ 𝑂 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) ) )
9 3 8 ax-mp ( LSSum ‘ 𝑂 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) )
10 eqid ( +g𝐺 ) = ( +g𝐺 )
11 4 10 2 lsmfval ( 𝐺 ∈ V → = ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
12 11 tposeqd ( 𝐺 ∈ V → tpos = tpos ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
13 eqid ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) = ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) )
14 13 reldmmpo Rel dom ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) )
15 13 mpofun Fun ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) )
16 funforn ( Fun ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ↔ ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) : dom ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) )
17 15 16 mpbi ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) : dom ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) )
18 tposfo2 ( Rel dom ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) → ( ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) : dom ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) → tpos ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) : dom ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
19 14 17 18 mp2 tpos ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) : dom ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) )
20 forn ( tpos ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) : dom ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) → ran tpos ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) = ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) )
21 19 20 ax-mp ran tpos ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) = ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) )
22 10 1 6 oppgplus ( 𝑥 ( +g𝑂 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 )
23 22 eqcomi ( 𝑦 ( +g𝐺 ) 𝑥 ) = ( 𝑥 ( +g𝑂 ) 𝑦 )
24 23 a1i ( ( 𝑦𝑢𝑥𝑡 ) → ( 𝑦 ( +g𝐺 ) 𝑥 ) = ( 𝑥 ( +g𝑂 ) 𝑦 ) )
25 24 mpoeq3ia ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) = ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) )
26 25 tposmpo tpos ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) = ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) )
27 26 rneqi ran tpos ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) = ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) )
28 21 27 eqtr3i ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) = ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) )
29 28 a1i ( ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) = ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) )
30 29 mpoeq3ia ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) = ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) )
31 30 tposmpo tpos ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦𝑢 , 𝑥𝑡 ↦ ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) )
32 12 31 eqtrdi ( 𝐺 ∈ V → tpos = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) ) )
33 9 32 eqtr4id ( 𝐺 ∈ V → ( LSSum ‘ 𝑂 ) = tpos )
34 33 oveqd ( 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑇 tpos 𝑈 ) )
35 ovtpos ( 𝑇 tpos 𝑈 ) = ( 𝑈 𝑇 )
36 34 35 eqtrdi ( 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 𝑇 ) )
37 eqid ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ )
38 0ex ∅ ∈ V
39 eqidd ( ( 𝑡 = 𝑇𝑢 = 𝑈 ) → ∅ = ∅ )
40 37 38 39 elovmpo ( 𝑥 ∈ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ↔ ( 𝑇 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑈 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ∅ ) )
41 40 simp3bi ( 𝑥 ∈ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) → 𝑥 ∈ ∅ )
42 41 ssriv ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ⊆ ∅
43 ss0 ( ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ⊆ ∅ → ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) = ∅ )
44 42 43 ax-mp ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) = ∅
45 elpwi ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) → 𝑡 ⊆ ( Base ‘ 𝐺 ) )
46 45 3ad2ant2 ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → 𝑡 ⊆ ( Base ‘ 𝐺 ) )
47 fvprc ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ )
48 47 3ad2ant1 ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∅ )
49 46 48 sseqtrd ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → 𝑡 ⊆ ∅ )
50 ss0 ( 𝑡 ⊆ ∅ → 𝑡 = ∅ )
51 49 50 syl ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → 𝑡 = ∅ )
52 51 orcd ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ( 𝑡 = ∅ ∨ 𝑢 = ∅ ) )
53 0mpo0 ( ( 𝑡 = ∅ ∨ 𝑢 = ∅ ) → ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) = ∅ )
54 52 53 syl ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) = ∅ )
55 54 rneqd ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) = ran ∅ )
56 rn0 ran ∅ = ∅
57 55 56 eqtrdi ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) = ∅ )
58 57 mpoeq3dva ( ¬ 𝐺 ∈ V → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑂 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) )
59 9 58 syl5eq ( ¬ 𝐺 ∈ V → ( LSSum ‘ 𝑂 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) )
60 59 oveqd ( ¬ 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) )
61 fvprc ( ¬ 𝐺 ∈ V → ( LSSum ‘ 𝐺 ) = ∅ )
62 2 61 syl5eq ( ¬ 𝐺 ∈ V → = ∅ )
63 62 oveqd ( ¬ 𝐺 ∈ V → ( 𝑈 𝑇 ) = ( 𝑈𝑇 ) )
64 0ov ( 𝑈𝑇 ) = ∅
65 63 64 eqtrdi ( ¬ 𝐺 ∈ V → ( 𝑈 𝑇 ) = ∅ )
66 44 60 65 3eqtr4a ( ¬ 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 𝑇 ) )
67 36 66 pm2.61i ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 𝑇 )