Metamath Proof Explorer


Theorem lsmssv

Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v 𝐵 = ( Base ‘ 𝐺 )
lsmless2.s = ( LSSum ‘ 𝐺 )
Assertion lsmssv ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) → ( 𝑇 𝑈 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 lsmless2.v 𝐵 = ( Base ‘ 𝐺 )
2 lsmless2.s = ( LSSum ‘ 𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 1 3 2 lsmvalx ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) → ( 𝑇 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) )
5 simpl1 ( ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) ∧ ( 𝑥𝑇𝑦𝑈 ) ) → 𝐺 ∈ Mnd )
6 simp2 ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) → 𝑇𝐵 )
7 6 sselda ( ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) ∧ 𝑥𝑇 ) → 𝑥𝐵 )
8 7 adantrr ( ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) ∧ ( 𝑥𝑇𝑦𝑈 ) ) → 𝑥𝐵 )
9 simp3 ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) → 𝑈𝐵 )
10 9 sselda ( ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) ∧ 𝑦𝑈 ) → 𝑦𝐵 )
11 10 adantrl ( ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) ∧ ( 𝑥𝑇𝑦𝑈 ) ) → 𝑦𝐵 )
12 1 3 mndcl ( ( 𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
13 5 8 11 12 syl3anc ( ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) ∧ ( 𝑥𝑇𝑦𝑈 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
14 13 ralrimivva ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) → ∀ 𝑥𝑇𝑦𝑈 ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
15 eqid ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) )
16 15 fmpo ( ∀ 𝑥𝑇𝑦𝑈 ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 ↔ ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) : ( 𝑇 × 𝑈 ) ⟶ 𝐵 )
17 14 16 sylib ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) → ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) : ( 𝑇 × 𝑈 ) ⟶ 𝐵 )
18 17 frnd ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) → ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) ⊆ 𝐵 )
19 4 18 eqsstrd ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) → ( 𝑇 𝑈 ) ⊆ 𝐵 )