Metamath Proof Explorer


Theorem lssnle

Description: Equivalent expressions for "not less than". ( chnlei analog.) (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lssnle.p ˙=LSSumG
lssnle.t φTSubGrpG
lssnle.u φUSubGrpG
Assertion lssnle φ¬UTTT˙U

Proof

Step Hyp Ref Expression
1 lssnle.p ˙=LSSumG
2 lssnle.t φTSubGrpG
3 lssnle.u φUSubGrpG
4 1 lsmss2b TSubGrpGUSubGrpGUTT˙U=T
5 2 3 4 syl2anc φUTT˙U=T
6 eqcom T˙U=TT=T˙U
7 5 6 bitrdi φUTT=T˙U
8 7 necon3bbid φ¬UTTT˙U
9 1 lsmub1 TSubGrpGUSubGrpGTT˙U
10 2 3 9 syl2anc φTT˙U
11 df-pss TT˙UTT˙UTT˙U
12 11 baib TT˙UTT˙UTT˙U
13 10 12 syl φTT˙UTT˙U
14 8 13 bitr4d φ¬UTTT˙U