Metamath Proof Explorer


Theorem lsmss2b

Description: Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion lsmss2b TSubGrpGUSubGrpGUTT˙U=T

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 1 lsmss2 TSubGrpGUSubGrpGUTT˙U=T
3 2 3expia TSubGrpGUSubGrpGUTT˙U=T
4 1 lsmub2 TSubGrpGUSubGrpGUT˙U
5 sseq2 T˙U=TUT˙UUT
6 4 5 syl5ibcom TSubGrpGUSubGrpGT˙U=TUT
7 3 6 impbid TSubGrpGUSubGrpGUTT˙U=T