Metamath Proof Explorer


Theorem lsmss2

Description: Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙ = LSSum G
Assertion lsmss2 T SubGrp G U SubGrp G U T T ˙ U = T

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙ = LSSum G
2 ssid T T
3 1 lsmlub T SubGrp G U SubGrp G T SubGrp G T T U T T ˙ U T
4 3 3anidm13 T SubGrp G U SubGrp G T T U T T ˙ U T
5 4 biimpd T SubGrp G U SubGrp G T T U T T ˙ U T
6 2 5 mpani T SubGrp G U SubGrp G U T T ˙ U T
7 6 3impia T SubGrp G U SubGrp G U T T ˙ U T
8 1 lsmub1 T SubGrp G U SubGrp G T T ˙ U
9 8 3adant3 T SubGrp G U SubGrp G U T T T ˙ U
10 7 9 eqssd T SubGrp G U SubGrp G U T T ˙ U = T