Step |
Hyp |
Ref |
Expression |
1 |
|
lsmub1.p |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
2 3 1
|
lsmval |
|
5 |
4
|
3adant3 |
|
6 |
5
|
rexeqdv |
|
7 |
|
ovex |
|
8 |
7
|
rgen2w |
|
9 |
|
eqid |
|
10 |
|
oveq1 |
|
11 |
10
|
eqeq2d |
|
12 |
11
|
rexbidv |
|
13 |
9 12
|
rexrnmpo |
|
14 |
8 13
|
ax-mp |
|
15 |
6 14
|
bitrdi |
|
16 |
2 3 1
|
lsmval |
|
17 |
16
|
3adant1 |
|
18 |
17
|
rexeqdv |
|
19 |
|
ovex |
|
20 |
19
|
rgen2w |
|
21 |
|
eqid |
|
22 |
|
oveq2 |
|
23 |
22
|
eqeq2d |
|
24 |
21 23
|
rexrnmpo |
|
25 |
20 24
|
ax-mp |
|
26 |
18 25
|
bitrdi |
|
27 |
26
|
adantr |
|
28 |
|
subgrcl |
|
29 |
28
|
3ad2ant1 |
|
30 |
29
|
ad2antrr |
|
31 |
2
|
subgss |
|
32 |
31
|
3ad2ant1 |
|
33 |
32
|
ad2antrr |
|
34 |
|
simplr |
|
35 |
33 34
|
sseldd |
|
36 |
2
|
subgss |
|
37 |
36
|
3ad2ant2 |
|
38 |
37
|
ad2antrr |
|
39 |
|
simprl |
|
40 |
38 39
|
sseldd |
|
41 |
2
|
subgss |
|
42 |
41
|
3ad2ant3 |
|
43 |
42
|
ad2antrr |
|
44 |
|
simprr |
|
45 |
43 44
|
sseldd |
|
46 |
2 3
|
grpass |
|
47 |
30 35 40 45 46
|
syl13anc |
|
48 |
47
|
eqeq2d |
|
49 |
48
|
2rexbidva |
|
50 |
27 49
|
bitr4d |
|
51 |
50
|
rexbidva |
|
52 |
15 51
|
bitr4d |
|
53 |
29
|
grpmndd |
|
54 |
2 1
|
lsmssv |
|
55 |
53 32 37 54
|
syl3anc |
|
56 |
2 3 1
|
lsmelvalx |
|
57 |
29 55 42 56
|
syl3anc |
|
58 |
2 1
|
lsmssv |
|
59 |
53 37 42 58
|
syl3anc |
|
60 |
2 3 1
|
lsmelvalx |
|
61 |
29 32 59 60
|
syl3anc |
|
62 |
52 57 61
|
3bitr4d |
|
63 |
62
|
eqrdv |
|