Step |
Hyp |
Ref |
Expression |
1 |
|
lsmub1.p |
|- .(+) = ( LSSum ` G ) |
2 |
1
|
lsmss2 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ U C_ T ) -> ( T .(+) U ) = T ) |
3 |
2
|
3expia |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( U C_ T -> ( T .(+) U ) = T ) ) |
4 |
1
|
lsmub2 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U C_ ( T .(+) U ) ) |
5 |
|
sseq2 |
|- ( ( T .(+) U ) = T -> ( U C_ ( T .(+) U ) <-> U C_ T ) ) |
6 |
4 5
|
syl5ibcom |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( T .(+) U ) = T -> U C_ T ) ) |
7 |
3 6
|
impbid |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( U C_ T <-> ( T .(+) U ) = T ) ) |