Step |
Hyp |
Ref |
Expression |
1 |
|
lsmub1.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
2 |
1
|
lsmss2 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝑇 ) → ( 𝑇 ⊕ 𝑈 ) = 𝑇 ) |
3 |
2
|
3expia |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑈 ⊆ 𝑇 → ( 𝑇 ⊕ 𝑈 ) = 𝑇 ) ) |
4 |
1
|
lsmub2 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
5 |
|
sseq2 |
⊢ ( ( 𝑇 ⊕ 𝑈 ) = 𝑇 → ( 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑈 ⊆ 𝑇 ) ) |
6 |
4 5
|
syl5ibcom |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑇 ⊕ 𝑈 ) = 𝑇 → 𝑈 ⊆ 𝑇 ) ) |
7 |
3 6
|
impbid |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑈 ⊆ 𝑇 ↔ ( 𝑇 ⊕ 𝑈 ) = 𝑇 ) ) |