Metamath Proof Explorer


Theorem lsmss2b

Description: Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p = ( LSSum ‘ 𝐺 )
Assertion lsmss2b ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑈𝑇 ↔ ( 𝑇 𝑈 ) = 𝑇 ) )

Proof

Step Hyp Ref Expression
1 lsmub1.p = ( LSSum ‘ 𝐺 )
2 1 lsmss2 ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈𝑇 ) → ( 𝑇 𝑈 ) = 𝑇 )
3 2 3expia ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑈𝑇 → ( 𝑇 𝑈 ) = 𝑇 ) )
4 1 lsmub2 ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑈 ⊆ ( 𝑇 𝑈 ) )
5 sseq2 ( ( 𝑇 𝑈 ) = 𝑇 → ( 𝑈 ⊆ ( 𝑇 𝑈 ) ↔ 𝑈𝑇 ) )
6 4 5 syl5ibcom ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑇 𝑈 ) = 𝑇𝑈𝑇 ) )
7 3 6 impbid ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑈𝑇 ↔ ( 𝑇 𝑈 ) = 𝑇 ) )