Metamath Proof Explorer


Theorem chnlei

Description: Equivalent expressions for "not less than" in the Hilbert lattice. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
Assertion chnlei ¬BAAAB

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 1 2 chub1i AAB
4 3 biantrur ¬A=ABAAB¬A=AB
5 2 1 chlejb1i BABA=A
6 eqcom BA=AA=BA
7 2 1 chjcomi BA=AB
8 7 eqeq2i A=BAA=AB
9 5 6 8 3bitri BAA=AB
10 9 notbii ¬BA¬A=AB
11 dfpss2 AABAAB¬A=AB
12 4 10 11 3bitr4i ¬BAAAB