Step |
Hyp |
Ref |
Expression |
1 |
|
lssnle.p |
|- .(+) = ( LSSum ` G ) |
2 |
|
lssnle.t |
|- ( ph -> T e. ( SubGrp ` G ) ) |
3 |
|
lssnle.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
4 |
1
|
lsmss2b |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( U C_ T <-> ( T .(+) U ) = T ) ) |
5 |
2 3 4
|
syl2anc |
|- ( ph -> ( U C_ T <-> ( T .(+) U ) = T ) ) |
6 |
|
eqcom |
|- ( ( T .(+) U ) = T <-> T = ( T .(+) U ) ) |
7 |
5 6
|
bitrdi |
|- ( ph -> ( U C_ T <-> T = ( T .(+) U ) ) ) |
8 |
7
|
necon3bbid |
|- ( ph -> ( -. U C_ T <-> T =/= ( T .(+) U ) ) ) |
9 |
1
|
lsmub1 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( T .(+) U ) ) |
10 |
2 3 9
|
syl2anc |
|- ( ph -> T C_ ( T .(+) U ) ) |
11 |
|
df-pss |
|- ( T C. ( T .(+) U ) <-> ( T C_ ( T .(+) U ) /\ T =/= ( T .(+) U ) ) ) |
12 |
11
|
baib |
|- ( T C_ ( T .(+) U ) -> ( T C. ( T .(+) U ) <-> T =/= ( T .(+) U ) ) ) |
13 |
10 12
|
syl |
|- ( ph -> ( T C. ( T .(+) U ) <-> T =/= ( T .(+) U ) ) ) |
14 |
8 13
|
bitr4d |
|- ( ph -> ( -. U C_ T <-> T C. ( T .(+) U ) ) ) |