| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lrelat.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lrelat.p |
|- .(+) = ( LSSum ` W ) |
| 3 |
|
lrelat.a |
|- A = ( LSAtoms ` W ) |
| 4 |
|
lrelat.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
lrelat.t |
|- ( ph -> T e. S ) |
| 6 |
|
lrelat.u |
|- ( ph -> U e. S ) |
| 7 |
|
lrelat.l |
|- ( ph -> T C. U ) |
| 8 |
1 3 4 5 6 7
|
lpssat |
|- ( ph -> E. q e. A ( q C_ U /\ -. q C_ T ) ) |
| 9 |
|
ancom |
|- ( ( q C_ U /\ -. q C_ T ) <-> ( -. q C_ T /\ q C_ U ) ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ q e. A ) -> W e. LMod ) |
| 11 |
1
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
| 12 |
10 11
|
syl |
|- ( ( ph /\ q e. A ) -> S C_ ( SubGrp ` W ) ) |
| 13 |
5
|
adantr |
|- ( ( ph /\ q e. A ) -> T e. S ) |
| 14 |
12 13
|
sseldd |
|- ( ( ph /\ q e. A ) -> T e. ( SubGrp ` W ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ q e. A ) -> q e. A ) |
| 16 |
1 3 10 15
|
lsatlssel |
|- ( ( ph /\ q e. A ) -> q e. S ) |
| 17 |
12 16
|
sseldd |
|- ( ( ph /\ q e. A ) -> q e. ( SubGrp ` W ) ) |
| 18 |
2 14 17
|
lssnle |
|- ( ( ph /\ q e. A ) -> ( -. q C_ T <-> T C. ( T .(+) q ) ) ) |
| 19 |
7
|
pssssd |
|- ( ph -> T C_ U ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ q e. A ) -> T C_ U ) |
| 21 |
20
|
biantrurd |
|- ( ( ph /\ q e. A ) -> ( q C_ U <-> ( T C_ U /\ q C_ U ) ) ) |
| 22 |
6
|
adantr |
|- ( ( ph /\ q e. A ) -> U e. S ) |
| 23 |
12 22
|
sseldd |
|- ( ( ph /\ q e. A ) -> U e. ( SubGrp ` W ) ) |
| 24 |
2
|
lsmlub |
|- ( ( T e. ( SubGrp ` W ) /\ q e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> ( ( T C_ U /\ q C_ U ) <-> ( T .(+) q ) C_ U ) ) |
| 25 |
14 17 23 24
|
syl3anc |
|- ( ( ph /\ q e. A ) -> ( ( T C_ U /\ q C_ U ) <-> ( T .(+) q ) C_ U ) ) |
| 26 |
21 25
|
bitrd |
|- ( ( ph /\ q e. A ) -> ( q C_ U <-> ( T .(+) q ) C_ U ) ) |
| 27 |
18 26
|
anbi12d |
|- ( ( ph /\ q e. A ) -> ( ( -. q C_ T /\ q C_ U ) <-> ( T C. ( T .(+) q ) /\ ( T .(+) q ) C_ U ) ) ) |
| 28 |
9 27
|
bitrid |
|- ( ( ph /\ q e. A ) -> ( ( q C_ U /\ -. q C_ T ) <-> ( T C. ( T .(+) q ) /\ ( T .(+) q ) C_ U ) ) ) |
| 29 |
28
|
rexbidva |
|- ( ph -> ( E. q e. A ( q C_ U /\ -. q C_ T ) <-> E. q e. A ( T C. ( T .(+) q ) /\ ( T .(+) q ) C_ U ) ) ) |
| 30 |
8 29
|
mpbid |
|- ( ph -> E. q e. A ( T C. ( T .(+) q ) /\ ( T .(+) q ) C_ U ) ) |