| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssatle.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lssatle.a |
|- A = ( LSAtoms ` W ) |
| 3 |
|
lssatle.w |
|- ( ph -> W e. LMod ) |
| 4 |
|
lssatle.t |
|- ( ph -> T e. S ) |
| 5 |
|
lssatle.u |
|- ( ph -> U e. S ) |
| 6 |
|
sstr |
|- ( ( p C_ T /\ T C_ U ) -> p C_ U ) |
| 7 |
6
|
expcom |
|- ( T C_ U -> ( p C_ T -> p C_ U ) ) |
| 8 |
7
|
ralrimivw |
|- ( T C_ U -> A. p e. A ( p C_ T -> p C_ U ) ) |
| 9 |
|
ss2rab |
|- ( { p e. A | p C_ T } C_ { p e. A | p C_ U } <-> A. p e. A ( p C_ T -> p C_ U ) ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ { p e. A | p C_ T } C_ { p e. A | p C_ U } ) -> W e. LMod ) |
| 11 |
1 2
|
lsatlss |
|- ( W e. LMod -> A C_ S ) |
| 12 |
|
rabss2 |
|- ( A C_ S -> { p e. A | p C_ U } C_ { p e. S | p C_ U } ) |
| 13 |
|
uniss |
|- ( { p e. A | p C_ U } C_ { p e. S | p C_ U } -> U. { p e. A | p C_ U } C_ U. { p e. S | p C_ U } ) |
| 14 |
3 11 12 13
|
4syl |
|- ( ph -> U. { p e. A | p C_ U } C_ U. { p e. S | p C_ U } ) |
| 15 |
|
unimax |
|- ( U e. S -> U. { p e. S | p C_ U } = U ) |
| 16 |
5 15
|
syl |
|- ( ph -> U. { p e. S | p C_ U } = U ) |
| 17 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 18 |
17 1
|
lssss |
|- ( U e. S -> U C_ ( Base ` W ) ) |
| 19 |
5 18
|
syl |
|- ( ph -> U C_ ( Base ` W ) ) |
| 20 |
16 19
|
eqsstrd |
|- ( ph -> U. { p e. S | p C_ U } C_ ( Base ` W ) ) |
| 21 |
14 20
|
sstrd |
|- ( ph -> U. { p e. A | p C_ U } C_ ( Base ` W ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ { p e. A | p C_ T } C_ { p e. A | p C_ U } ) -> U. { p e. A | p C_ U } C_ ( Base ` W ) ) |
| 23 |
|
uniss |
|- ( { p e. A | p C_ T } C_ { p e. A | p C_ U } -> U. { p e. A | p C_ T } C_ U. { p e. A | p C_ U } ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ { p e. A | p C_ T } C_ { p e. A | p C_ U } ) -> U. { p e. A | p C_ T } C_ U. { p e. A | p C_ U } ) |
| 25 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 26 |
17 25
|
lspss |
|- ( ( W e. LMod /\ U. { p e. A | p C_ U } C_ ( Base ` W ) /\ U. { p e. A | p C_ T } C_ U. { p e. A | p C_ U } ) -> ( ( LSpan ` W ) ` U. { p e. A | p C_ T } ) C_ ( ( LSpan ` W ) ` U. { p e. A | p C_ U } ) ) |
| 27 |
10 22 24 26
|
syl3anc |
|- ( ( ph /\ { p e. A | p C_ T } C_ { p e. A | p C_ U } ) -> ( ( LSpan ` W ) ` U. { p e. A | p C_ T } ) C_ ( ( LSpan ` W ) ` U. { p e. A | p C_ U } ) ) |
| 28 |
27
|
ex |
|- ( ph -> ( { p e. A | p C_ T } C_ { p e. A | p C_ U } -> ( ( LSpan ` W ) ` U. { p e. A | p C_ T } ) C_ ( ( LSpan ` W ) ` U. { p e. A | p C_ U } ) ) ) |
| 29 |
1 25 2
|
lssats |
|- ( ( W e. LMod /\ T e. S ) -> T = ( ( LSpan ` W ) ` U. { p e. A | p C_ T } ) ) |
| 30 |
3 4 29
|
syl2anc |
|- ( ph -> T = ( ( LSpan ` W ) ` U. { p e. A | p C_ T } ) ) |
| 31 |
1 25 2
|
lssats |
|- ( ( W e. LMod /\ U e. S ) -> U = ( ( LSpan ` W ) ` U. { p e. A | p C_ U } ) ) |
| 32 |
3 5 31
|
syl2anc |
|- ( ph -> U = ( ( LSpan ` W ) ` U. { p e. A | p C_ U } ) ) |
| 33 |
30 32
|
sseq12d |
|- ( ph -> ( T C_ U <-> ( ( LSpan ` W ) ` U. { p e. A | p C_ T } ) C_ ( ( LSpan ` W ) ` U. { p e. A | p C_ U } ) ) ) |
| 34 |
28 33
|
sylibrd |
|- ( ph -> ( { p e. A | p C_ T } C_ { p e. A | p C_ U } -> T C_ U ) ) |
| 35 |
9 34
|
biimtrrid |
|- ( ph -> ( A. p e. A ( p C_ T -> p C_ U ) -> T C_ U ) ) |
| 36 |
8 35
|
impbid2 |
|- ( ph -> ( T C_ U <-> A. p e. A ( p C_ T -> p C_ U ) ) ) |