Metamath Proof Explorer


Theorem lssatle

Description: The ordering of two subspaces is determined by the atoms under them. ( chrelat3 analog.) (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses lssatle.s S=LSubSpW
lssatle.a A=LSAtomsW
lssatle.w φWLMod
lssatle.t φTS
lssatle.u φUS
Assertion lssatle φTUpApTpU

Proof

Step Hyp Ref Expression
1 lssatle.s S=LSubSpW
2 lssatle.a A=LSAtomsW
3 lssatle.w φWLMod
4 lssatle.t φTS
5 lssatle.u φUS
6 sstr pTTUpU
7 6 expcom TUpTpU
8 7 ralrimivw TUpApTpU
9 ss2rab pA|pTpA|pUpApTpU
10 3 adantr φpA|pTpA|pUWLMod
11 1 2 lsatlss WLModAS
12 rabss2 ASpA|pUpS|pU
13 uniss pA|pUpS|pUpA|pUpS|pU
14 3 11 12 13 4syl φpA|pUpS|pU
15 unimax USpS|pU=U
16 5 15 syl φpS|pU=U
17 eqid BaseW=BaseW
18 17 1 lssss USUBaseW
19 5 18 syl φUBaseW
20 16 19 eqsstrd φpS|pUBaseW
21 14 20 sstrd φpA|pUBaseW
22 21 adantr φpA|pTpA|pUpA|pUBaseW
23 uniss pA|pTpA|pUpA|pTpA|pU
24 23 adantl φpA|pTpA|pUpA|pTpA|pU
25 eqid LSpanW=LSpanW
26 17 25 lspss WLModpA|pUBaseWpA|pTpA|pULSpanWpA|pTLSpanWpA|pU
27 10 22 24 26 syl3anc φpA|pTpA|pULSpanWpA|pTLSpanWpA|pU
28 27 ex φpA|pTpA|pULSpanWpA|pTLSpanWpA|pU
29 1 25 2 lssats WLModTST=LSpanWpA|pT
30 3 4 29 syl2anc φT=LSpanWpA|pT
31 1 25 2 lssats WLModUSU=LSpanWpA|pU
32 3 5 31 syl2anc φU=LSpanWpA|pU
33 30 32 sseq12d φTULSpanWpA|pTLSpanWpA|pU
34 28 33 sylibrd φpA|pTpA|pUTU
35 9 34 biimtrrid φpApTpUTU
36 8 35 impbid2 φTUpApTpU