Metamath Proof Explorer


Theorem lssat

Description: Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. ( chpssati analog.) (Contributed by NM, 9-Apr-2014)

Ref Expression
Hypotheses lssat.s S = LSubSp W
lssat.a A = LSAtoms W
Assertion lssat W LMod U S V S U V p A p V ¬ p U

Proof

Step Hyp Ref Expression
1 lssat.s S = LSubSp W
2 lssat.a A = LSAtoms W
3 dfpss3 U V U V ¬ V U
4 3 simprbi U V ¬ V U
5 ss2rab p A | p V p A | p U p A p V p U
6 iman p V p U ¬ p V ¬ p U
7 6 ralbii p A p V p U p A ¬ p V ¬ p U
8 5 7 bitr2i p A ¬ p V ¬ p U p A | p V p A | p U
9 simpl1 W LMod U S V S p A | p V p A | p U W LMod
10 1 2 lsatlss W LMod A S
11 rabss2 A S p A | p U p S | p U
12 uniss p A | p U p S | p U p A | p U p S | p U
13 9 10 11 12 4syl W LMod U S V S p A | p V p A | p U p A | p U p S | p U
14 simpl2 W LMod U S V S p A | p V p A | p U U S
15 unimax U S p S | p U = U
16 14 15 syl W LMod U S V S p A | p V p A | p U p S | p U = U
17 eqid Base W = Base W
18 17 1 lssss U S U Base W
19 14 18 syl W LMod U S V S p A | p V p A | p U U Base W
20 16 19 eqsstrd W LMod U S V S p A | p V p A | p U p S | p U Base W
21 13 20 sstrd W LMod U S V S p A | p V p A | p U p A | p U Base W
22 uniss p A | p V p A | p U p A | p V p A | p U
23 22 adantl W LMod U S V S p A | p V p A | p U p A | p V p A | p U
24 eqid LSpan W = LSpan W
25 17 24 lspss W LMod p A | p U Base W p A | p V p A | p U LSpan W p A | p V LSpan W p A | p U
26 9 21 23 25 syl3anc W LMod U S V S p A | p V p A | p U LSpan W p A | p V LSpan W p A | p U
27 simpl3 W LMod U S V S p A | p V p A | p U V S
28 1 24 2 lssats W LMod V S V = LSpan W p A | p V
29 9 27 28 syl2anc W LMod U S V S p A | p V p A | p U V = LSpan W p A | p V
30 1 24 2 lssats W LMod U S U = LSpan W p A | p U
31 9 14 30 syl2anc W LMod U S V S p A | p V p A | p U U = LSpan W p A | p U
32 26 29 31 3sstr4d W LMod U S V S p A | p V p A | p U V U
33 32 ex W LMod U S V S p A | p V p A | p U V U
34 8 33 syl5bi W LMod U S V S p A ¬ p V ¬ p U V U
35 34 con3dimp W LMod U S V S ¬ V U ¬ p A ¬ p V ¬ p U
36 dfrex2 p A p V ¬ p U ¬ p A ¬ p V ¬ p U
37 35 36 sylibr W LMod U S V S ¬ V U p A p V ¬ p U
38 4 37 sylan2 W LMod U S V S U V p A p V ¬ p U