| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssat.s |
|
| 2 |
|
lssat.a |
|
| 3 |
|
dfpss3 |
|
| 4 |
3
|
simprbi |
|
| 5 |
|
ss2rab |
|
| 6 |
|
iman |
|
| 7 |
6
|
ralbii |
|
| 8 |
5 7
|
bitr2i |
|
| 9 |
|
simpl1 |
|
| 10 |
1 2
|
lsatlss |
|
| 11 |
|
rabss2 |
|
| 12 |
|
uniss |
|
| 13 |
9 10 11 12
|
4syl |
|
| 14 |
|
simpl2 |
|
| 15 |
|
unimax |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
eqid |
|
| 18 |
17 1
|
lssss |
|
| 19 |
14 18
|
syl |
|
| 20 |
16 19
|
eqsstrd |
|
| 21 |
13 20
|
sstrd |
|
| 22 |
|
uniss |
|
| 23 |
22
|
adantl |
|
| 24 |
|
eqid |
|
| 25 |
17 24
|
lspss |
|
| 26 |
9 21 23 25
|
syl3anc |
|
| 27 |
|
simpl3 |
|
| 28 |
1 24 2
|
lssats |
|
| 29 |
9 27 28
|
syl2anc |
|
| 30 |
1 24 2
|
lssats |
|
| 31 |
9 14 30
|
syl2anc |
|
| 32 |
26 29 31
|
3sstr4d |
|
| 33 |
32
|
ex |
|
| 34 |
8 33
|
biimtrid |
|
| 35 |
34
|
con3dimp |
|
| 36 |
|
dfrex2 |
|
| 37 |
35 36
|
sylibr |
|
| 38 |
4 37
|
sylan2 |
|