Metamath Proof Explorer


Theorem chpssati

Description: Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 A C
chpssat.2 B C
Assertion chpssati A B x HAtoms x B ¬ x A

Proof

Step Hyp Ref Expression
1 chpssat.1 A C
2 chpssat.2 B C
3 dfpss3 A B A B ¬ B A
4 3 simprbi A B ¬ B A
5 iman x B x A ¬ x B ¬ x A
6 5 ralbii x HAtoms x B x A x HAtoms ¬ x B ¬ x A
7 ss2rab x HAtoms | x B x HAtoms | x A x HAtoms x B x A
8 ssrab2 x HAtoms | x B HAtoms
9 atssch HAtoms C
10 8 9 sstri x HAtoms | x B C
11 ssrab2 x HAtoms | x A HAtoms
12 11 9 sstri x HAtoms | x A C
13 chsupss x HAtoms | x B C x HAtoms | x A C x HAtoms | x B x HAtoms | x A x HAtoms | x B x HAtoms | x A
14 10 12 13 mp2an x HAtoms | x B x HAtoms | x A x HAtoms | x B x HAtoms | x A
15 2 hatomistici B = x HAtoms | x B
16 1 hatomistici A = x HAtoms | x A
17 14 15 16 3sstr4g x HAtoms | x B x HAtoms | x A B A
18 7 17 sylbir x HAtoms x B x A B A
19 6 18 sylbir x HAtoms ¬ x B ¬ x A B A
20 19 con3i ¬ B A ¬ x HAtoms ¬ x B ¬ x A
21 dfrex2 x HAtoms x B ¬ x A ¬ x HAtoms ¬ x B ¬ x A
22 20 21 sylibr ¬ B A x HAtoms x B ¬ x A
23 4 22 syl A B x HAtoms x B ¬ x A