Metamath Proof Explorer


Theorem chpssati

Description: Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 A C
chpssat.2 B C
Assertion chpssati A B x HAtoms x B ¬ x A

Proof

Step Hyp Ref Expression
1 chpssat.1 A C
2 chpssat.2 B C
3 dfpss3 A B A B ¬ B A
4 iman x B x A ¬ x B ¬ x A
5 4 ralbii x HAtoms x B x A x HAtoms ¬ x B ¬ x A
6 ss2rab x HAtoms | x B x HAtoms | x A x HAtoms x B x A
7 ssrab2 x HAtoms | x B HAtoms
8 atssch HAtoms C
9 7 8 sstri x HAtoms | x B C
10 ssrab2 x HAtoms | x A HAtoms
11 10 8 sstri x HAtoms | x A C
12 chsupss x HAtoms | x B C x HAtoms | x A C x HAtoms | x B x HAtoms | x A x HAtoms | x B x HAtoms | x A
13 9 11 12 mp2an x HAtoms | x B x HAtoms | x A x HAtoms | x B x HAtoms | x A
14 2 hatomistici B = x HAtoms | x B
15 1 hatomistici A = x HAtoms | x A
16 13 14 15 3sstr4g x HAtoms | x B x HAtoms | x A B A
17 6 16 sylbir x HAtoms x B x A B A
18 5 17 sylbir x HAtoms ¬ x B ¬ x A B A
19 18 con3i ¬ B A ¬ x HAtoms ¬ x B ¬ x A
20 dfrex2 x HAtoms x B ¬ x A ¬ x HAtoms ¬ x B ¬ x A
21 19 20 sylibr ¬ B A x HAtoms x B ¬ x A
22 3 21 simplbiim A B x HAtoms x B ¬ x A