Step |
Hyp |
Ref |
Expression |
1 |
|
chpssat.1 |
|- A e. CH |
2 |
|
chpssat.2 |
|- B e. CH |
3 |
|
dfpss3 |
|- ( A C. B <-> ( A C_ B /\ -. B C_ A ) ) |
4 |
3
|
simprbi |
|- ( A C. B -> -. B C_ A ) |
5 |
|
iman |
|- ( ( x C_ B -> x C_ A ) <-> -. ( x C_ B /\ -. x C_ A ) ) |
6 |
5
|
ralbii |
|- ( A. x e. HAtoms ( x C_ B -> x C_ A ) <-> A. x e. HAtoms -. ( x C_ B /\ -. x C_ A ) ) |
7 |
|
ss2rab |
|- ( { x e. HAtoms | x C_ B } C_ { x e. HAtoms | x C_ A } <-> A. x e. HAtoms ( x C_ B -> x C_ A ) ) |
8 |
|
ssrab2 |
|- { x e. HAtoms | x C_ B } C_ HAtoms |
9 |
|
atssch |
|- HAtoms C_ CH |
10 |
8 9
|
sstri |
|- { x e. HAtoms | x C_ B } C_ CH |
11 |
|
ssrab2 |
|- { x e. HAtoms | x C_ A } C_ HAtoms |
12 |
11 9
|
sstri |
|- { x e. HAtoms | x C_ A } C_ CH |
13 |
|
chsupss |
|- ( ( { x e. HAtoms | x C_ B } C_ CH /\ { x e. HAtoms | x C_ A } C_ CH ) -> ( { x e. HAtoms | x C_ B } C_ { x e. HAtoms | x C_ A } -> ( \/H ` { x e. HAtoms | x C_ B } ) C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) ) |
14 |
10 12 13
|
mp2an |
|- ( { x e. HAtoms | x C_ B } C_ { x e. HAtoms | x C_ A } -> ( \/H ` { x e. HAtoms | x C_ B } ) C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) |
15 |
2
|
hatomistici |
|- B = ( \/H ` { x e. HAtoms | x C_ B } ) |
16 |
1
|
hatomistici |
|- A = ( \/H ` { x e. HAtoms | x C_ A } ) |
17 |
14 15 16
|
3sstr4g |
|- ( { x e. HAtoms | x C_ B } C_ { x e. HAtoms | x C_ A } -> B C_ A ) |
18 |
7 17
|
sylbir |
|- ( A. x e. HAtoms ( x C_ B -> x C_ A ) -> B C_ A ) |
19 |
6 18
|
sylbir |
|- ( A. x e. HAtoms -. ( x C_ B /\ -. x C_ A ) -> B C_ A ) |
20 |
19
|
con3i |
|- ( -. B C_ A -> -. A. x e. HAtoms -. ( x C_ B /\ -. x C_ A ) ) |
21 |
|
dfrex2 |
|- ( E. x e. HAtoms ( x C_ B /\ -. x C_ A ) <-> -. A. x e. HAtoms -. ( x C_ B /\ -. x C_ A ) ) |
22 |
20 21
|
sylibr |
|- ( -. B C_ A -> E. x e. HAtoms ( x C_ B /\ -. x C_ A ) ) |
23 |
4 22
|
syl |
|- ( A C. B -> E. x e. HAtoms ( x C_ B /\ -. x C_ A ) ) |