Step |
Hyp |
Ref |
Expression |
1 |
|
chpssat.1 |
|- A e. CH |
2 |
|
chpssat.2 |
|- B e. CH |
3 |
1 2
|
chpssati |
|- ( A C. B -> E. x e. HAtoms ( x C_ B /\ -. x C_ A ) ) |
4 |
|
ancom |
|- ( ( x C_ B /\ -. x C_ A ) <-> ( -. x C_ A /\ x C_ B ) ) |
5 |
|
pssss |
|- ( A C. B -> A C_ B ) |
6 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
7 |
|
chnle |
|- ( ( A e. CH /\ x e. CH ) -> ( -. x C_ A <-> A C. ( A vH x ) ) ) |
8 |
1 7
|
mpan |
|- ( x e. CH -> ( -. x C_ A <-> A C. ( A vH x ) ) ) |
9 |
8
|
adantl |
|- ( ( A C_ B /\ x e. CH ) -> ( -. x C_ A <-> A C. ( A vH x ) ) ) |
10 |
|
ibar |
|- ( A C_ B -> ( x C_ B <-> ( A C_ B /\ x C_ B ) ) ) |
11 |
|
chlub |
|- ( ( A e. CH /\ x e. CH /\ B e. CH ) -> ( ( A C_ B /\ x C_ B ) <-> ( A vH x ) C_ B ) ) |
12 |
1 2 11
|
mp3an13 |
|- ( x e. CH -> ( ( A C_ B /\ x C_ B ) <-> ( A vH x ) C_ B ) ) |
13 |
10 12
|
sylan9bb |
|- ( ( A C_ B /\ x e. CH ) -> ( x C_ B <-> ( A vH x ) C_ B ) ) |
14 |
9 13
|
anbi12d |
|- ( ( A C_ B /\ x e. CH ) -> ( ( -. x C_ A /\ x C_ B ) <-> ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) ) |
15 |
5 6 14
|
syl2an |
|- ( ( A C. B /\ x e. HAtoms ) -> ( ( -. x C_ A /\ x C_ B ) <-> ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) ) |
16 |
4 15
|
syl5bb |
|- ( ( A C. B /\ x e. HAtoms ) -> ( ( x C_ B /\ -. x C_ A ) <-> ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) ) |
17 |
16
|
rexbidva |
|- ( A C. B -> ( E. x e. HAtoms ( x C_ B /\ -. x C_ A ) <-> E. x e. HAtoms ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) ) |
18 |
3 17
|
mpbid |
|- ( A C. B -> E. x e. HAtoms ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) |