Step |
Hyp |
Ref |
Expression |
1 |
|
chpssat.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chpssat.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
dfpss3 |
⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐴 ⊊ 𝐵 → ¬ 𝐵 ⊆ 𝐴 ) |
5 |
|
iman |
⊢ ( ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ↔ ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
6 |
5
|
ralbii |
⊢ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ↔ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
7 |
|
ss2rab |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) |
8 |
|
ssrab2 |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ HAtoms |
9 |
|
atssch |
⊢ HAtoms ⊆ Cℋ |
10 |
8 9
|
sstri |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ Cℋ |
11 |
|
ssrab2 |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ HAtoms |
12 |
11 9
|
sstri |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ |
13 |
|
chsupss |
⊢ ( ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ Cℋ ∧ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ ) → ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
14 |
10 12 13
|
mp2an |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
15 |
2
|
hatomistici |
⊢ 𝐵 = ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ) |
16 |
1
|
hatomistici |
⊢ 𝐴 = ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
17 |
14 15 16
|
3sstr4g |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → 𝐵 ⊆ 𝐴 ) |
18 |
7 17
|
sylbir |
⊢ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
19 |
6 18
|
sylbir |
⊢ ( ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
20 |
19
|
con3i |
⊢ ( ¬ 𝐵 ⊆ 𝐴 → ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
21 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ↔ ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
22 |
20 21
|
sylibr |
⊢ ( ¬ 𝐵 ⊆ 𝐴 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
23 |
4 22
|
syl |
⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |