| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpssat.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
chpssat.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
dfpss3 |
⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ) |
| 4 |
3
|
simprbi |
⊢ ( 𝐴 ⊊ 𝐵 → ¬ 𝐵 ⊆ 𝐴 ) |
| 5 |
|
iman |
⊢ ( ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ↔ ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| 6 |
5
|
ralbii |
⊢ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ↔ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| 7 |
|
ss2rab |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) |
| 8 |
|
ssrab2 |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ HAtoms |
| 9 |
|
atssch |
⊢ HAtoms ⊆ Cℋ |
| 10 |
8 9
|
sstri |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ Cℋ |
| 11 |
|
ssrab2 |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ HAtoms |
| 12 |
11 9
|
sstri |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ |
| 13 |
|
chsupss |
⊢ ( ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ Cℋ ∧ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ ) → ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
| 14 |
10 12 13
|
mp2an |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 15 |
2
|
hatomistici |
⊢ 𝐵 = ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ) |
| 16 |
1
|
hatomistici |
⊢ 𝐴 = ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
| 17 |
14 15 16
|
3sstr4g |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐵 } ⊆ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → 𝐵 ⊆ 𝐴 ) |
| 18 |
7 17
|
sylbir |
⊢ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 19 |
6 18
|
sylbir |
⊢ ( ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 20 |
19
|
con3i |
⊢ ( ¬ 𝐵 ⊆ 𝐴 → ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| 21 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ↔ ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( ¬ 𝐵 ⊆ 𝐴 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| 23 |
4 22
|
syl |
⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |