Metamath Proof Explorer


Theorem hatomistici

Description: CH is atomistic, i.e. any element is the supremum of its atoms. Remark in Kalmbach p. 140. (Contributed by NM, 14-Aug-2002) (New usage is discouraged.)

Ref Expression
Hypothesis hatomistic.1 AC
Assertion hatomistici A=xHAtoms|xA

Proof

Step Hyp Ref Expression
1 hatomistic.1 AC
2 ssrab2 xHAtoms|xAHAtoms
3 atssch HAtomsC
4 2 3 sstri xHAtoms|xAC
5 chsupcl xHAtoms|xACxHAtoms|xAC
6 4 5 ax-mp xHAtoms|xAC
7 1 chshii AS
8 atelch yHAtomsyC
9 8 anim1i yHAtomsyAyCyA
10 sseq1 x=yxAyA
11 10 elrab yxHAtoms|xAyHAtomsyA
12 10 elrab yxC|xAyCyA
13 9 11 12 3imtr4i yxHAtoms|xAyxC|xA
14 13 ssriv xHAtoms|xAxC|xA
15 ssrab2 xC|xAC
16 chsupss xHAtoms|xACxC|xACxHAtoms|xAxC|xAxHAtoms|xAxC|xA
17 4 15 16 mp2an xHAtoms|xAxC|xAxHAtoms|xAxC|xA
18 14 17 ax-mp xHAtoms|xAxC|xA
19 chsupid ACxC|xA=A
20 1 19 ax-mp xC|xA=A
21 18 20 sseqtri xHAtoms|xAA
22 elssuni yxHAtoms|xAyxHAtoms|xA
23 11 22 sylbir yHAtomsyAyxHAtoms|xA
24 chsupunss xHAtoms|xACxHAtoms|xAxHAtoms|xA
25 4 24 ax-mp xHAtoms|xAxHAtoms|xA
26 23 25 sstrdi yHAtomsyAyxHAtoms|xA
27 26 ex yHAtomsyAyxHAtoms|xA
28 atne0 yHAtomsy0
29 28 adantr yHAtomsyxHAtoms|xAy0
30 ssin yxHAtoms|xAyxHAtoms|xAyxHAtoms|xAxHAtoms|xA
31 6 chocini xHAtoms|xAxHAtoms|xA=0
32 31 sseq2i yxHAtoms|xAxHAtoms|xAy0
33 30 32 bitr2i y0yxHAtoms|xAyxHAtoms|xA
34 chle0 yCy0y=0
35 8 34 syl yHAtomsy0y=0
36 33 35 bitr3id yHAtomsyxHAtoms|xAyxHAtoms|xAy=0
37 36 biimpa yHAtomsyxHAtoms|xAyxHAtoms|xAy=0
38 37 expr yHAtomsyxHAtoms|xAyxHAtoms|xAy=0
39 38 necon3ad yHAtomsyxHAtoms|xAy0¬yxHAtoms|xA
40 29 39 mpd yHAtomsyxHAtoms|xA¬yxHAtoms|xA
41 40 ex yHAtomsyxHAtoms|xA¬yxHAtoms|xA
42 27 41 syld yHAtomsyA¬yxHAtoms|xA
43 imnan yA¬yxHAtoms|xA¬yAyxHAtoms|xA
44 42 43 sylib yHAtoms¬yAyxHAtoms|xA
45 ssin yAyxHAtoms|xAyAxHAtoms|xA
46 44 45 sylnib yHAtoms¬yAxHAtoms|xA
47 46 nrex ¬yHAtomsyAxHAtoms|xA
48 6 choccli xHAtoms|xAC
49 1 48 chincli AxHAtoms|xAC
50 49 hatomici AxHAtoms|xA0yHAtomsyAxHAtoms|xA
51 50 necon1bi ¬yHAtomsyAxHAtoms|xAAxHAtoms|xA=0
52 47 51 ax-mp AxHAtoms|xA=0
53 6 7 21 52 omlsii xHAtoms|xA=A
54 53 eqcomi A=xHAtoms|xA