| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hatomistic.1 |
|
| 2 |
|
ssrab2 |
|
| 3 |
|
atssch |
|
| 4 |
2 3
|
sstri |
|
| 5 |
|
chsupcl |
|
| 6 |
4 5
|
ax-mp |
|
| 7 |
1
|
chshii |
|
| 8 |
|
atelch |
|
| 9 |
8
|
anim1i |
|
| 10 |
|
sseq1 |
|
| 11 |
10
|
elrab |
|
| 12 |
10
|
elrab |
|
| 13 |
9 11 12
|
3imtr4i |
|
| 14 |
13
|
ssriv |
|
| 15 |
|
ssrab2 |
|
| 16 |
|
chsupss |
|
| 17 |
4 15 16
|
mp2an |
|
| 18 |
14 17
|
ax-mp |
|
| 19 |
|
chsupid |
|
| 20 |
1 19
|
ax-mp |
|
| 21 |
18 20
|
sseqtri |
|
| 22 |
|
elssuni |
|
| 23 |
11 22
|
sylbir |
|
| 24 |
|
chsupunss |
|
| 25 |
4 24
|
ax-mp |
|
| 26 |
23 25
|
sstrdi |
|
| 27 |
26
|
ex |
|
| 28 |
|
atne0 |
|
| 29 |
28
|
adantr |
|
| 30 |
|
ssin |
|
| 31 |
6
|
chocini |
|
| 32 |
31
|
sseq2i |
|
| 33 |
30 32
|
bitr2i |
|
| 34 |
|
chle0 |
|
| 35 |
8 34
|
syl |
|
| 36 |
33 35
|
bitr3id |
|
| 37 |
36
|
biimpa |
|
| 38 |
37
|
expr |
|
| 39 |
38
|
necon3ad |
|
| 40 |
29 39
|
mpd |
|
| 41 |
40
|
ex |
|
| 42 |
27 41
|
syld |
|
| 43 |
|
imnan |
|
| 44 |
42 43
|
sylib |
|
| 45 |
|
ssin |
|
| 46 |
44 45
|
sylnib |
|
| 47 |
46
|
nrex |
|
| 48 |
6
|
choccli |
|
| 49 |
1 48
|
chincli |
|
| 50 |
49
|
hatomici |
|
| 51 |
50
|
necon1bi |
|
| 52 |
47 51
|
ax-mp |
|
| 53 |
6 7 21 52
|
omlsii |
|
| 54 |
53
|
eqcomi |
|