Description: A subspace is the supremum of all smaller subspaces. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | chsupid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 | |
|
2 | chsupval2 | |
|
3 | 1 2 | ax-mp | |
4 | unimax | |
|
5 | 4 | sseq1d | |
6 | 5 | rabbidv | |
7 | 6 | inteqd | |
8 | intmin | |
|
9 | 7 8 | eqtrd | |
10 | 3 9 | eqtrid | |