Metamath Proof Explorer


Theorem chsupid

Description: A subspace is the supremum of all smaller subspaces. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion chsupid ACxC|xA=A

Proof

Step Hyp Ref Expression
1 ssrab2 xC|xAC
2 chsupval2 xC|xACxC|xA=yC|xC|xAy
3 1 2 ax-mp xC|xA=yC|xC|xAy
4 unimax ACxC|xA=A
5 4 sseq1d ACxC|xAyAy
6 5 rabbidv ACyC|xC|xAy=yC|Ay
7 6 inteqd ACyC|xC|xAy=yC|Ay
8 intmin ACyC|Ay=A
9 7 8 eqtrd ACyC|xC|xAy=A
10 3 9 eqtrid ACxC|xA=A